C. T. Kelley,
Newton's Method in Three Precisions,
Pacific Journal of Optimization, 20 (2024), pp 461-474.
C. T. Kelley
MultiPrecisionArrays.jl: A Julia package for iterative refinement
Journal of Open Source Software, (2024).
doi:10.21105/joss.06698,
2024.
Published online September 2024
S. Pasmann, I. Variansyah, C. T. Kelley, and R. McClarren,
Mitigating Spatial Error in the iterative-Quasi-Monte Carlo
(iQMC) Method for Neutron Transport Simulations with Linear
Discontinuous Source Tilting and Effective Scattering and Fission Rate
Tallies
Nuclear Sci Eng., published online May 6, 2004.
J. P. Morgan, I. Variansyah, S. Pasmann, K. B. Clements,
B. Cuneo, A. Mote, C. Goodman, C. Shaw, J. Northrop,
R. Pankaj, E. Lame, B. Whewell, R. McClarren,
T. S. Palmer, L. Chen, D. Anistratov, C. T. Kelley,
C. Palmer, and K. E. Niemeyer,
Monte Carlo / Dynamic Code (MC/DC): An accelerated
Python package for fully transient neutron transport and rapid
methods development
,
Journal of Open Source Software, (2024).
doi:0.21105/joss.06415,
2024.
Published online April 2024 .
S. Pasmann, I. Variansyah, C. T. Kelley, and R. McClarren
A quasi-Monte Carlo method with Krylov linear solvers for multigroup
neutron transport simulations,
Nuclear Science and Engineering, (2023).
doi:10.1080/00295639.2022.2143704.
Published online Jan 12, 2023.
C. T. Kelley,
Newton's Method in Mixed Precision
SIAM Review, 64 (2022), pp. 191--211.
doi:10.1137/20M1342902
Z. Morrow, H-Y. Kwon, C. T. Kelley, and E. Jakubikova
Efficient Approximation of Potential Energy Surfaces with
Mixed-Basis Interpolation
,
J. Chem. Th. Comput. (2021)
doi:10.1021/acs.jctc.1c00569
Z. Morrow, H-Y. Kwon, C. T. Kelley, and E. Jakubikova
Reduced-dimensional surface hopping with offline–online computations
,
Phys Chem Chem Phys (2021)
doi:10.1039/D1CP03446D
H-Y. Kwon, Z. Morrow, E. Jakubikova, and C. T. Kelley
Interpolation Methods for Molecular Potential Energy Surface
Construction
,
J. Phys. Chem. A (2021)
doi:10.1021/acs.jpca.1c06812
W. Bian and X. Chen and C. T. Kelley
Anderson Acceleration for a Class of Nonsmooth
Fixed-Point Problems
SIAM J. Sci. Comp. (2021)
doi:10.1137/20M132938X
C. T. Kelley, J. Bernholc, E. Briggs, S. P. Hamilton,
L. Lin and C. Yang
Mesh-Independence of the Generalized Davidson Algorithm
J. Comp. Phys., 409 (2020),
doi:10.1016/j.jcp.2020.109322
Z. Morrow, C. Liu, C. T. Kelley, and E. Jakubikova,
Approximating potential energy surfaces with sparse
trigonometric interpolation,
J. Phys. Chem. B, 123 (2019), pp. 9677--9684.
doi:10.1021/acs.jpcb.9b08210
J. A. Ellis, T. Evans, S. Hamilton, C. T. Kelley,
and T. M. Pandya
Optimization of processor allocation for domain
decomposed Monte Carlo calculations
J. Parallel Comp., 87 (2019), pp. 77-96.
doi:10.1016/j.parco.2019.06.001
Z. Morrow, H-Y. Kwon, C. T. Kelley, and E. Jakubikova
Efficient Approximation of Potential Energy Surfaces with
Mixed-Basis Interpolation
,
J. Chem. Th. Comput. (2021)
doi:10.1021/acs.jctc.1c00569
Z. Morrow, H-Y. Kwon, C. T. Kelley, and E. Jakubikova
Reduced-dimensional surface hopping with offline–online computations
,
Phys Chem Chem Phys (2021)
doi:10.1039/D1CP03446D
H-Y. Kwon, Z. Morrow, E. Jakubikova, and C. T. Kelley
Interpolation Methods for Molecular Potential Energy Surface
Construction
,
J. Phys. Chem. A (2021)
doi:10.1021/acs.jpca.1c06812
C. Liu, C. T. Kelley, and E. Jakubikova
Molecular dynamics simulations on relaxed reduced-dimensional
potential energy surfaces
J. Chem. Th. and Comp. doi:10.1021/acs.jpca.9b02298
Published online May 16, 2019.
X. Chen and C. T. Kelley,
Analysis of the EDIIS Algorithm
SIAM J. Sci. Comp., 41 (2019), pp. A365-A379.
doi:10.1137/18M1171084
T.M. Weigand, P.B. Schultz, D.H. Giffen,
M.W. Farthing, A. Crockett, C.T. Kelley, W.G. Gray,
and C.T. Miller,
Modeling Non-Dilute Species Transport Using
the Thermodynamically Constrained Averaging Theory
Water Resources Research, 54 (2019), pp. 6656-6682.
doi:10.1029/2017WR022471
X. Chen, C. T. Kelley, F. Xu, and Z. Zhang,
A smoothing direct search method for Monte Carlo-based constrained
nonsmooth nonconvex optimization,
SIAM J. Sci. Comp., 40 (2018), pp. A2174-A2199. doi:10.1137/17M1116714.
C. T. Kelley,
Numerical methods for nonlinear equations,
Acta Numerica, 27 (2018), pp. 207-287. doi:10.1017/S0962492917000113.
A. Toth, J. A. Ellis, T. Evans, S. Hamilton, C. T. Kelley,
R. Pawlowski, and S. Slattery,
Local improvement results for Anderson acceleration with inaccurate
function evaluations,
SIAM J. Sci. Comp., 39 (2017), pp. S47-S65. doi:10.1137/16M1080677.
Implicit Filtering and Hidden Constraints
Chapter 38 in
Advances and Trends in Optimization with Engineering Applications,
Tamas Terlaky, Miguel Anjos and Shabbir Ahmed, eds"
SIAM, Philadelphia,
2017, pp. 507-508,
X. Chen and C. T. Kelley,
Optimization with hidden constraints and embedded Monte Carlo
computations,
Optimization and Engineering, 17 (2016), pp. 157-175.
doi:10.1007/s11081-015-9302- 1.
E. J. Wyers and M. A. Morton and G. Soller and C. T. Kelley
and P. D. Franzon,
A Generally Applicable Calibration Algorithm for Digitally
Reconfigurable Self-Healing RFICs
IEEE Trans on VLSI Systems, 24 (2016), pp. 1151-1164.
doi:10.1109/TVLSI.2015.2424211.
J. Nance, D. Bowman, S. Mukherjee, C. T. Kelley, and E. Jakubikova,
New insights into the spin-state transitions in [Fe(tpy) ] +:
Importance of the terpyridine rocking motion
,
Inorganic
Chemistry, 54 (2015), pp. 11259-11268. doi:10.1021/acs.inorgchem.5b01747.
J. Nance and C. T. Kelley,
A Sparse Interpolation Algorithm for Dynamical Simulations in
Computational Chemistry,
SIAM J. Sci. Comp, 27 (2015) pp. S237-S156. doi:10.1137/140965284.
J. Nance, E. Jakubikova, and C. T. Kelley,
Reaction Path Following with Sparse Interpolation
J. Chem. Th. Comp., 10 (2015) pp. 2942-2949.
doi=10.1021/ct5004669.
A. Toth and C. T. Kelley,
Convergence Analysis for Anderson Acceleration
SIAM J. Numer. Anal, 53 (2015), pp 805-819.
J. Willert, X. Chen, and C. T. Kelley,
Newton's Method for Monte Carlo-Based Residuals
SIAM J. Numer. Anal., 53 (2015), pp. 1738-1757. doi:10.1137/130905691.
J. Willert, C. T. Kelley, D. Knoll, and H. K. Park,
A Hybrid Deterministic/Monte Carlo Method for Solving the
k-Eigenvalue Problem with a Comparison to
Analog Monte Carlo Solutions<\em>,
Z. Hu, R. Smith, J. Willert, and C. T. Kelley,
HDMR applied to the 1-D, Single Speed Neutron Transport k-Eigenvalue
Problem,
J. Willert, C. T. Kelley, D. Knoll, and H. K. Park,
Hybrid Deterministic/Monte Carlo Neutronics,
E. J. Wyers, M. B. Steer, C. T. Kelley, and P. D. Franzon,
A Bounded and Discretized Nelder-Mead Algorithm Suitable for
RFIC Calibration,
A. S. Costolanski, C. T. Kelley, G. W. Howell, and A. G. Salinger,
An Efficient Parallel Solution to the Wigner-Poisson Equations,
J. Willert, C. T. Kelley, D. A. Knoll, and H. K. Park,
A Hybrid Approach to the Neutron Transport k-Eigenvalue Problem using
NDA-based Algorithms,
J. Willert and C. T. Kelley,
Efficient Solutions to the NDA-NCA Low-Order Eigenvalue Problem
,
C. T. Kelley and L-Z. Liao,
Explicit Pseudo-Transient Continuation ,
L. M. Ellwein, S. R. Pope, A. Xie, J. Batzel, C. T. Kelley, and M. S.
Olufsen,
Patient specific modeling of cardiovascular and respiratory
dynamics during hypercapnia.
C. T. Miller, C. N. Dawson, M. W. Farthing, T. Y. Hou, J. Huang, C. E.
Kees, C. T. Kelley, and H. P. Langtangen,
Numerical simulation of water resources problems: Models, methods, and
trends,
C. T. Kelley and D. Mokrauer,
Sparse interpolatory reduced-order models for simulation of
light-induced molecular transformations ,
David Mokrauer, C. T. Kelley, and Alexei Bykhovski,
Simulations of Light-Induced Molecular Transformations
in Multiple Dimensions with Incremental Sparse Surrogates
C. T. Kelley,
Implicit Filtering,
no. 23 in Software Environments and Tools,
SIAM, Philadelphia, 2011.
E. J. Wyers, M. B. Steer, C. T. Kelley, and P. D. Franzon,
Application of a Modified Nelder-Mead Algorithm
for calibrating RF Analog Integrated Circuits
C. Winton, J. Pettway, C. T. Kelley, S. E Howington, and O. J. Eslinger,
Finding A Stable Solution of A System of Nonlinear Equations
I. C. F. Ipsen and C. T. Kelley and S. R. Pope,
Nonlinear Least Squares Problems and Subset Selection,
SIAM J. Numer. Anal, 49, 2011, 1244-1266.
David Mokrauer, C. T. Kelley, and Alexei Bykhovski,
Efficient Parallel Computation of Molecular Potential
Surfaces for Optimization,
J. Comp. Th. Transport, 2014.
18 pages, published electronically Aug 2014,
doi=10.1080/00411450.2014.910225
Nuclear Sci Eng., 177 (2014), pp 1-11.
SIAM, J. Sci. Comp., 35 (2014), pp S62--S83.
IEEE Trans Cir Sys, 60 (2013), pp 1787-1799.
High Performance Computing Symposium (HPC 2013),
Simulation Series Vol 45,
ociety for Modeling \& Simulation International,
F. Liu, ed, Curran Associates Inc, April 2013,
773-780.
Proceedings of International Conference on Mathematics and
Computational Methods Applied to Nuclear Science & Engineering,
2013, 1934--1941.
Proceedings of International Conference on Mathematics and
Computational Methods Applied to Nuclear Science & Engineering,
2013, 2725-2735.
Pacific Journal of Optimzation, 9 (2013), 77-91.
Math Biosci, 241, 2013, 56-74.
Advances in Water Resources, 51 (2012), 403-437.
Optimization Methods and Software, 2012,
doi=10.3182/20090812-3-DK-2006.0088
J. Algorithms and Computational Technology, 6 (2012), 577-592.
Proceedings GOMACTech'11, 2011, 545-548.
Application of Proper Orthogonal Decomposition
(POD) to Inverse Problems in Saturated Groundwater
Flow,
Advances in Water Resources, 34, 2011, 1519-1526.
C. T. Kelley, L. Qi, X. Tong, and H. Yin.
Journal of Industrial and Management Optimization,
7, 2011, 497-521.
IEEE Transactions on Nanotechnology,
10, 2011, 70-74.