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1. Introduction. The purpose of this paper is to analyze and extend an explicit version of pseudo-
transient continuation (ΨTC) which has been proposed in [6] for nonlinear equations and in [7] for uncon-
strained optimization. This method is appealing, as are all explicit methods, because it does not require
solutions of linear systems. The disadvantage, of course, is that more iterations will be needed because the
fast local convergence of Newton’s method will be lost. In this introductory section we explain ΨTC , review
some existing methods and describe the simplest version of the method from [6]. We follow that with the
analysis and extensions, and finish the paper with a numerical example.

The objective of the method of pseudo-transient continuation [4, 11, 12] is to integrate an initial value
problem

u′ = −F (u);u(0) = u0(1.1)

to steady state. Here u and F are valued in RN and F is Lipschitz continuous. By integration to steady
state we mean computation of

u∗ = lim
t→∞

u(t),

if it exists, as we will assume it does.
Clearly

F (u∗) = 0(1.2)

and, in principle, a Newton-like method [5, 8, 10, 17] could be used. However ΨTC exploits the dynamics in
(1.1) to select the unique solution of (1.2) which is the limit of the dynamics. This property is very useful
in preserving accurate physics [13,14].

Most variants of the ΨTC in the literature are implicit and use the iteration

un+1 = un − (δ−1
n I + F ′(un))−1F (un).(1.3)

ΨTC algorithms which are based on (1.3) attempt to increase δn as the iteration progresses and still maintain
stability when un is far from the solution. Ideally the formula should evolve towards Newton’s method
(δn ≡ ∞) in the terminal phase of the iteration.

The various ΨTC algorithms which use (1.3) differ in their strategies for managing the sequence {δn}.
Several of these methods have been analyzed in [4, 11, 12]. The proofs of convergence share three common
features:

1. If δ0 is sufficiently small, the iteration will be close to an explicit Euler integration, and therefore
be able to approach u∗ arbitrarily closely. In particular, un will eventually lie in the domain of
attraction for Newton’s method.
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2. Once near u∗ the time step control will allow δn to safely grow while keeping u in the domain of
attraction for Newton’s method.

3. Once δn is sufficiently large, the local convergence theory for Newton-like methods will take over,
and the convergence in the terminal phase will be fast.

Other approaches, which replace Euler’s method with a higher-order method have also been considered
[15,18].

Computing un+1 with (1.3) requires the solution of the linear system

(δ−1
n I + F ′(un))d = −F (un),

and hence we refer to it as an implicit method. The method of [6] does not require solutions of linear
equations, and is in that sense explicit.

We continue this paper in § 1.1 by describing the method from [6]. In § 2 we give a convergence
proof, extend the method to the case of optimization problems with simple bound constraints, and propose
a new stepsize management scheme. In § 3 we illustrate the results with a bound-constrained parameter
identification problem [2,9, 12].

1.1. Explicit ΨTC . The simplest version of the algorithm fixes δ for the entire iteration. A parameter
ǫ, a tolerance τ , and an initial iterate u0 are given. We define

ω =
δ

δ + ǫ
.

We will discuss changing δ as the iteration progresses later in § 2.4.

Algorithm 1 The EPS Method from [6]

n = 0; z0 = δF (u0);
u0

1 = u0 − z0;
Compute F (u0

1) and ρ = ‖F (u0
1)‖

while ρ > τ do

zn+1 = ω(ǫF (u0
n+1) + zn)

un+1 = un − zn+1

n ← n + 1
u0

n+1 = un − zn;
Compute F (u0

n+1) and ρ = ‖F (u0
n+1)‖

end while

The algorithm is expressed in terms of un and u0
n because the analysis uses the error in un, while the

termination criterion uses F (u0
n).

We have elected to return the final value of u0
n as the result because the residual has been evaluated

there. If the method terminates successfully, u0
n+1 will be the converged result. There is only one function

evaluation at each step.

2. Theory. The first thing we need to prove is that zn is a good approximation of an explicit Euler
step. Once we do that we can use the method from our previous papers on pseudo-transient continuation
(ΨTC ) [4,11,12] to show that the iteration will track the dynamics if δ is sufficiently small.

We begin with a list of our assumptions on F and (1.1)
Assumption 2.1.

1. F is uniformly Lipschitz continuously differentiable.

2. The solution of the IVP (1.1) converges to u∗ ∈ RN as t → ∞.

3. There is ∆0 > 0 such that if |y − u0| < ∆0 then the solution of

v′ = −F (v); v(0) = y(2.1)

converges to u∗ as t → ∞.
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4. There is a neighborhood N of {u(t) | t > 0} on which F is uniformly bounded.

5. F ′(u∗) has positive real eigenvalues.

The last assumption on F ′(u∗) is needed for the terminal phase of the iteration, and is part of the price
we pay for an explicit method.

2.1. Getting Close to u∗. We can follow the plan for the analysis of implicit ΨTC only as far at the
first step, and do so in Theorem 2.1. The proof in § 2.2 of convergence to u∗ in the terminal phase requires
something different.

In what follows ‖ · ‖ denotes any norm on RN .
Theorem 2.1. Assume that Assumption 2.1 holds. Let the parameter ǫ in Algorithm 1 be given. Then

for any ∆ > 0, for all δ > 0 sufficiently small, there is an n > 0 such that

‖un − u∗‖ < ∆, ‖u0
n − u∗‖ < ∆, ‖zn‖ < ∆,

and uk ∈ N for all 0 ≤ k ≤ n.

Proof. We will apply the technique from [4, 11, 12], where we show that the iteration differs from a
forward Euler step by O(δ2), where the constant in the O-term depends only on F . This directly implies
the result using exactly the analysis from [11].

Let

M = sup
u∈N

‖F (u)‖,(2.2)

and let T > 0 be such that

‖F (u(T ))‖ < ∆.(2.3)

Let δ = T/n. We will change n as we complete the proof.
From the relation ωǫ = (1 − ω)δ we have

‖zn+1‖ ≤ (1 − ω)δM + ω‖zn‖(2.4)

which, since ‖z0‖ ≤ δM implies that

‖zn‖ ≤ Mδ,(2.5)

for all n.
Let

En = zn − δF (un) and µn = ‖En‖/δ2.

We can write

zn−1 = δF (un−1) + En−1

= δF (un) + δ(F (un−1) − F (un)) + En−1.
(2.6)

We let L denote the Lipschitz constant of F . From (2.5) and (2.6) we have

‖zn−1 − δF (un)‖ ≤ (LM + µn−1)δ
2.(2.7)

Similarly

‖F (u0
n) − F (un)‖ ≤ 2LMδ.(2.8)

We combine (2.7) and (2.8) with

zn = ω(ǫF (u0
n) + zn−1)



4 KELLEY AND LIAO

to conclude that

zn = ω(ǫF (u0
n) + zn−1) = (1 − ω)δF (u0

n) + ωzn−1

= (1 − ω)δF (un) + ωδF (un) + En

= δF (un) + En,

(2.9)

where

‖En‖ = ‖(1 − ω)δ(F (u0
n) − F (un)) + ω(zn−1 − δF (un))‖

≤ (1 − ω)2LMδ2 + ω(LM + µn−1)δ
2 = (LM + ωµn−1)δ

2.

So,

µn ≤ 2LM + ωµn−1,(2.10)

which implies, since µ0 = 0, that

µn ≤ µmax ≡ 2LM/(1 − ω).(2.11)

Now let ∆0 < ∆/2 be such that if ‖u − u(t)‖ < ∆0 for any t ≥ 0 then u ∈ N . Let T be such that

‖u(t) − u∗‖ < ∆0/2

for all t > T .

We can use the same analysis as was used in [11] to argue that there is C > 0 such that

‖uk − u(kδ)‖ ≤ Cδ(2.12)

whenever (k − 2)δ ≤ T . Assume that

δ <
∆0

2(C + 4M)
,(2.13)

and define n by

(n − 2)δ ≤ T < (n − 1)δ.

Then (2.12) and (2.13) imply that

uk ∈ N for all 0 ≤ k ≤ n.

Since (n − 1)δ > T , we see that for k = n − 1, n,

‖uk − u∗‖ ≤ ‖uk − u(kδ)‖ + ‖u(kδ) − u∗‖ < ∆0 < ∆/2,

and hence, setting k = n, ‖un − u∗‖ < ∆. Finally, to show that ‖u0
n − u∗‖ < ∆ we note that

‖u0
n − u∗‖ ≤ ‖un−1 − u∗‖ + ‖zn−1‖ ≤ ∆/2 + Mδ ≤ ∆/2 + ∆0/2 < ∆,

completing the proof.
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2.2. Convergence Near the Solution. We must now prove convergence from points near the solution.
We will begin with the convergence result for linear problems from [6].

Theorem 2.2. Let A have positive real eigenvalues and let F (u) = Au. Then if ǫρ(A) < 4/3 the

iteration converges to u∗ = 0 for all δ > 0.
Proof. We use the formulae

u0
n+1 = un − zn

zn+1 = ω(ǫAu0
n+1 + zn) = ω(ǫA(un − zn) + zn)

= ω(ǫAun + (I − ǫA)zn)

and

un+1 = un − zn+1 = (I − ωǫA)un − ω(I − ǫA)zn

to see that
(

un+1

zn+1

)

= A

(

un

zn

)

.(2.14)

In (2.14) the 2N × 2N matrix A is

A =





I − ωǫA −ωI + ωǫA

ωǫA ωI − ωǫA





We want to show that the spectral radius of the matrix in (2.14) is smaller than one. Let µ be an
eigenvalue of A and let U = (ξT , ηT )T be the corresponding eigenvector. The equation AU = µU implies
that

(I − ωǫA)ξ + (−ωI + ωǫA)η = µξ(2.15)

and

ωǫAξ + (ωI − ωǫA)η = µη.(2.16)

If we add (2.15) to (2.16) we obtain

ξ = µ(ξ + η).(2.17)

Hence η is a scalar multiple of ξ, and both are eigenfunctions of A. If Aξ = λξ, then (2.16) and (2.17) imply
that

µ2 − (1 + ω − 2ωǫλ)µ + ω(1 − ǫλ) = 0.

A tedious but routine calculation shows that the roots of this polynomial are < 1 for all δ > 0 if ǫλ < 4/3.
Having shown that un → 0 and zn → 0, it is clear that u0

n → 0.
This result may seem strange, since the stability region for explicit methods must be bounded [1].

However, it is not correct in this case to interpret δ as a step size in the traditional sense.
To complete the convergence analysis we must show that if um and u0

m are sufficiently near u∗ for some
m > 0, then un → u∗, zn → 0, and therefore u0

n → u∗. This will connect the result from Theorem 2.1, which
says that for δ sufficiently small one can get arbitrarily close to u∗, with local convergence in the terminal
phase.

As is standard we define e = u − u∗.
Theorem 2.3. Let Assumption 2.1 hold. Assume that

ǫρ(F ′(u∗)) < 4/3.(2.18)
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Let {un} be the iteration from Algorithm 1. Then there is ∆ > 0 and a norm ‖ · ‖∗ on R2N such that if

∥

∥

∥

∥

(

em

zm

)∥

∥

∥

∥

∗

< ∆

then

∥

∥

∥

∥

(

en

zn

)∥

∥

∥

∥

∗

< ∆

for all n ≥ m and

(

un

zn

)

→

(

u∗

0

)

q-linearly.

Proof. For un near u∗ and zn sufficiently small we have

(

en+1

zn+1

)

= J ∗

(

en

zn

)

+ E(un, zn),(2.19)

where the 2N × 2N matrix J ∗ is

J ∗ =





I − ωǫF ′(u∗) −ωI + ωǫF ′(u∗)

ωǫF ′(u∗) ωI − ωǫF ′(u∗)



 .(2.20)

Now let σ∗ = ρ(J ∗) be the spectral radius of J ∗. Theorem 2.2 says that σ∗ < 1. Let ‖ · ‖∗ be a vector
norm on R2N for which

‖J ∗‖∗ ≤ σ ≡
1 + σ∗

2
.

Taylor’s theorem implies that the error E can be bounded by

‖E‖∗ ≤ K

∥

∥

∥

∥

(

en

zn

)∥

∥

∥

∥

2

∗

.(2.21)

Let m satisfy the assumptions of the theorem and let ∆ > 0 be small enough so that

∥

∥

∥

∥

(

em

zm

)∥

∥

∥

∥

∗

<
1 − σ

2K

where K is the constant in the bound (2.21). Then

∥

∥

∥

∥

(

em+1

zm+1

)∥

∥

∥

∥

∗

≤ (σ + (1 − σ)/2)

∥

∥

∥

∥

(

em

zm

)∥

∥

∥

∥

∗

.

Since (σ + (1 − σ)/2) < (1 + σ)/2 < 1, the proof is complete.
We can now combine Theorems 2.1 and 2.3 to prove a complete convergence result.
Theorem 2.4. Let Assumption 2.1 hold. Assume there is K̄ so that δn ≤ K̄δ0 for all n. Then if

ǫρ(J ∗) < 4/3 and δ0 is sufficiently small, u0
n → u∗ and zn → 0 q-linearly.

Proof. We define a norm on R2N

∥

∥

∥

∥

(

u
z

)∥

∥

∥

∥

0

= ‖u‖ + ‖z‖.
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Since all norms are R2N are equivalent, there is ν > 1 so that

ν−1

∥

∥

∥

∥

(

u
z

)∥

∥

∥

∥

0

≤

∥

∥

∥

∥

(

u
z

)∥

∥

∥

∥

∗

≤ ν

∥

∥

∥

∥

(

u
z

)∥

∥

∥

∥

0

(2.22)

By Theorem 2.1 we may adjust δ0 so that
∥

∥

∥

∥

(

em

zm

)∥

∥

∥

∥

0

≤ ∆/ν

for some m < ∞. This will imply that
∥

∥

∥

∥

(

em

zm

)∥

∥

∥

∥

∗

≤ ∆.

Hence the conclusion of Theorem 2.3 holds and the vector (un, zn)T → (u∗, 0)T q-linearly in the ‖ · ‖∗
norm.

2.3. Bound Constraints. In this section we will indicate how the methods of [12] can be applied to
extend the explicit ΨTC method to optimization problems with simple bound constraints. The optimization
problem is

min f(u) subject to the bound constraints L ≤ u ≤ U(2.23)

where the inequalities are component wise. We assume that f is twice Lipschitz continuously differentiable.
The gradient flow equation associated with (2.23) is

u′ = −F (u)(2.24)

where

F (u) = u − P(u −∇f(u)).(2.25)

In (2.25) P(u)i = max(Li,min(Ui, (u)i)), where (u)i denotes ith component of a vector u ∈ RN .
The explicit ΨTC algorithm projects onto the bound constraints at the end of each step. The algorithm

is

Algorithm 2 Explicit ΨTC for Bound Constraints

n = 0; z0 = δF (u0);
u0

1 = P(u0 − z0);
Compute F (u0

1) and ρ = ‖F (u0
1)‖

while ρ > τ do

zn+1 = ω(ǫF (u0
n+1) + zn)

un+1 = P(un − zn+1)
n ← n + 1
u0

n+1 = P(un − zn);
Compute F (u0

n+1) and ρ = ‖F (u0
n+1)‖

end while

Clearly F and P are Lipschitz continuous, with P having Lipschitz constant 1. This means the conver-
gence results from § 2.1 apply directly. The critical step is the estimate

‖un − un−1‖ = ‖P(un−1 − zn) − P(un−1)‖ ≤ ‖zn‖ ≤ Mδ

which we need to prove (2.7). Here we use the fact that un−1 = P(un−1), which holds by definition.
However, F is not differentiable in the classical sense, but has a structure which allows us to extend the

results in § 2.2, as we do in this section.
We must modify Assumption 2.1 slightly. We assume that the initial data u0 is such that
Assumption 2.2.
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1. ∇f is uniformly Lipschitz continuously differentiable.

2. The solution of the IVP (1.1) converges to u∗ ∈ RN as t → ∞.

3. There is ∆0 > 0 such that if |y − u0| < ∆0 then the solution of

v′ = −F (v); v(0) = y,(2.26)

converges to u∗ as t → ∞.

4. There is a neighborhood N of {u(t) | t > 0} on which F is uniformly bounded.

5. u∗ satisfies the second-order sufficient conditions for optimality.

The last part of Assumption 2.2 is the same as that of the last part of Assumption 2.1 in the unconstrained
case. To explain how the bound constrained case differs we must review the taxonomy of constraints [3,9,12].
We define three sets of indices. The set I of inactive indices is

I = {i |Li < (u∗)i < Ui}.

The set of active indices is the complement of I

A = {i | (u∗)i = Li or (u∗)i = Ui}.

Finally, the set of binding constraints is

B = {i | (u∗)i = Li and ∂f(u∗)/∂ui > 0} ∪ {i | (u∗)i = Ui and ∂f(u∗)/∂ui < 0}.

Note that if i is active but not binding, then

∂f(u∗)/∂ui = 0.

We define the modified Hessian H∗ of F at u∗ by

H∗
ij =











δij if i ∈ B or j ∈ B,

∂2f(u∗)
∂ui∂uj

otherwise,

where δij is the standard Kronecker δ. The sufficient conditions for optimality at u∗ are that F (u∗) = 0 and
H∗ is positive definite.

For implicit ΨTC , [12], one could show that the binding constraints were identified in finitely many
steps and then apply the theory for unconstrained problems. That is not so with explicit ΨTC , and that
fact makes the theory a bit weaker.

Theorem 2.5. Assume that Assumption 2.2 holds and that A = B. Then F is differentiable near u∗,

F ′(u∗) has positive real eigenvalues, and the conclusions of Theorem 2.3 hold.

Proof. Without loss of generality we may assume that the active indices are 1 ≤ i ≤ k and the inactive
indices are k + 1 ≤ i ≤ N . Then the modified Hessian is block diagonal

H∗ =

(

I 0
0 R∗

)

.(2.27)

In (2.27) I is the k × k identity matrix and R∗ is the (N − k)× (N − k) reduced Hessian. The second-order
sufficiency conditions imply that R∗ is positive definite.

Let ∆ > 0 be small enough so that if ‖u − u∗‖ < ∆ that

F (u)i = (u)i − min(Ui,max((u)i − ∂f/∂ui, Li)) = (u)i − (u∗)i

for all i ∈ A. We can do this because A = B. So, if ‖u − u∗‖ < ∆ then the first k rows of F ′ are the same
as the first k rows of H∗.

We can also, reducing ∆ if necessary, arrange things so that if i ∈ I then |(u)i − (u∗)i| < max(U∗
i −

(u∗)i, (u
∗)i − Li). Then

F (u)i = −∂f/∂ui,
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and hence, for all i ∈ I the ith row of F ′ is simply the i row of the Hessian of f .
Therefore, for all u sufficiently near u∗,

F ′(u) =

(

I 0
C R∗

)

,(2.28)

where C is the (N −k)×k block of mixed partials ∂2f/∂ui∂uj with i ∈ I and j ∈ A. Since R∗ is symmetric
positive definite, the eigenvalues of F ′ are λ = 1 and the eigenvalues of R∗.

The remainder of the proof is exactly the same as that of Theorem 2.3, with the modified Hessian H∗

used in place of J ∗.

2.4. Step Size Control. An efficient implementation requires an algorithm for stepsize control. In this
section we propose an algorithm based on a hybrid of a standard approach for implicit ΨTC with safeguarding
to maintain stability of the explicit algorithm. The approach in [6] was to increase δ by doubling whenever
‖F (un)‖ declined below a given threshold. The algorithm in [6] allowed for at most three increases of δ. Our
objective is to provide a more flexible method with fewer arbitrary decisions and a way to reduce the step.

The assumption in Theorem 2.4 that δn ≤ Kδ0 is only necessary in the first phase of the iteration.
Once un is sufficiently near u∗, one could in principle increase δ very rapidly, since Theorem 2.3 requires no
upper limit on δ. However, it is not clear how one determines when δ can be increased more rapidly. Our
experiments show little benefit from dramatic increases of δ.

Our implementation uses a variation on the “switched evolution relaxation” (SER) [16] which is a
common approach in the implicit case. In the implicit case the update formula is

δn+1 = δn

‖F (un)‖

‖F (un+1)‖
(2.29)

which may be safeguarded to keep δ from becoming too large

δn+1 = min

(

δmax, δn

‖F (un)‖

‖F (un+1)‖

)

where δmax is an upper limit on δ.
In the implicit case we have found that we must take more care with both the size and the frequency of

the changes in δ. Our approach is to monitor the logarithmic change in ‖F‖

σn = log ‖F (un+1)‖ − log ‖F (un)‖

and to only update the step if σn > −1/2. This keeps the step from rapid oscillation. If σn > −1/2, we use
SER to update the step, but safeguard the update by limiting any change to 50%.

In the special case where F (u) = ∇f(u), we also test the initial step δ0 and reduce it, if necessary, to
make f(u1) < f(u0).

3. Parameter Identification Example. This is a small N = 2 example taken from [2, 9, 12]. The
problem is to determine the damping coefficient c and spring constant k for a simple harmonic oscillator
using measured data. This example has bound constraints.

The underlying differential equation is

w′′ + cw′ + kw = 0;w(0) = w0, w
′(0) = 0,(3.1)

on the interval [0, 1]. As in our previous work, we let u = (c, k)T and use as data the values of the analytic
solution at 1000 equally spaced points. We integrate the dynamics with the MATLAB code ode15s with
relative and absolute error tolerances set to 10−6.

This is a nonlinear least squares problem with residual R having components

R(u)i = wexact(ti) − wi(u)

for 1 ≤ i ≤ 1000. Here wi is the solution from ode15s and wexact the analytic solution.
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The objective function is

f(u) = ‖R(u)‖2
2/2

and the gradient which drives our ΨTC algorithm is

∇f(u) = R′(u)T R(u)

where R′ is the Jacobian of R. The ΨTC algorithm seeks to integrate

u′ = −F (u)

to steady state, where F (u) is a descent direction for f at u. In [12] we used a projected Levenberg-Marquardt
iteration, which was a successful approach for implicit ΨTC .

The implicit ΨTC method proposed in [12] solved this problem with simple bound constraints very
efficiently. The objective here is to test the explicit approach without constraints. In [12] we imposed bound
constraints

0 ≤ c, k ≤ 10

and arranged the data so that

u∗ = (c∗, k∗)T = (1, 1)T

is the solution.
One way to attack this problem is to drive the dynamics with the Gauss-Newton direction

F (u) = R′(u)†R(u) = (R′(u)T R′(u))−1R′(u)T R(u).(3.2)

Assuming that R′ has full rank throughout the domain of interest then the assumptions of the convergence
results are satisfied if we bound u away from (0, 0)T , where the Jacobian is singular. This was not necessary
in our work on the implicit approach because the iteration avoided the singularity. That is not the case here
and we have seen the iteration fail because the sequence of iterations was too near the singularity. Hence we
use

Ω = {c, k | .1 ≤ c, k ≤ 10}

as the feasible set in this section.
Since F ′(u∗) = I, a choice of ǫ = 1/2 satisfies the convergence theory. Using (3.2) is unrealistic, of

course, since a linear least squares problem must be solved at each step, so the work per step is no less
than the implicit approach from [12]. It is useful to look at this case to see how one might benefit from a
well-conditioned problem. We compare ΨTC with the Gauss-Newton direction to ΨTC with the steepest
descent direction

F (u) = ∇f(u) = R′(u)T R(u)(3.3)

with an initial iterate of u0 = (10, 10)T . We set ǫ = 1/2 and δ0 = .1 in this example. We terminated the
iteration when the norm of F had been reduced by a factor of 10−6. As one can see from the iteration
history in left side of Figure 3.1, ΨTC converged (in 11 iterations) using the Gauss-Newton direction and
completely failed with the steepest descent direction. The reason for this difference in performance is that
ǫ = 1/2 is a good choice for the Gauss-Newton formulation and a very poor one for steepest descent.

If we solve the problem again with ǫ = 1.d − 3, we see a different result. In this case ǫ is well-chosen
for the steepest descent iteration. The right side of Figure 3.1 shows the relative performances of the two
formulations are reversed, illustrating the effect of ǫ on the performance of the iteration.

If we impose simple bounds,

Li ≤ ui ≤ Ui for i = 1, 2(3.4)
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Fig. 3.1. Parameter Identification: Unconstrained
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we must alter F by projection onto the tangent space of the constraint set. In the steepest descent case we
use

F (u) = u − P(u −∇f(u))

and for Gauss-Newton we use

F (u) = u − P(u − (R′(u)T R′(u))−1∇f(u)).

In both cases P is the projection onto the constraint set

P(u)i = max(Li min(Ui, ui)).

In the computations reported here we terminate the iteration once the residual norm has been reduced
by a factor of 10−3.

Figures 3.2 and 3.3 apply this formulation to two other examples from [12]. Both are bound constrained
problems with upper bounds (10, 10)T . The effect of changing ǫ is visible in both examples. In Figure 3.2 the
lower bounds are (2, .1)T . This problem does not have zero residual because the global minimum is outside
the bounds. The constraint c = 2 is active at the solution. In Figure 3.3 the lower bounds are (1, 1)T , and
the problem is degenerate, which means that there are non-binding active constraints. Theorem 2.5 does
not apply to this case, but the numerical results look promising.
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Fig. 3.2. Parameter Identification: Active Constraint
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Fig. 3.3. Parameter Identification: Degenerate
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4. Conclusions. In this paper we have analyzed and extended the results from [6] on explicit pseudo-
transient continuation. The method has promise because, as with all explicit methods, no linear equations
need to be solved to compute the iterations. The price one pays for this is that more iterations are required
that the standard implicit pseudo-transient algorithms. The method, at least as it stands now, performs
best if one has knowledge of the spectrum of the Jacobian. That knowledge may be difficult to obtain, and
further research is needed to find ways to adaptively tune the method and reduce the number of iterations
needed for convergence.
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