
Optimization Methods and Software
Vol. 00, No. 00, Month 200x, 1–10

RESEARCH ARTICLE

Sparse Interpolatory Reduced-Order Models for Simulation of

Light-Induced Molecular Transformations

David Mokrauer and C T. Kelley
(Received 00 Month 200x; in final form 00 Month 200x)

We describe a method for using interpolatory models to accurately and efficiently simulate
molecular excitation and relaxation. We use sparse interpolation for efficiency and local error
estimation and control for robustness and accuracy.

Keywords: Sparse Interpolation, Molecular Dynamics, Error Estimation and Control

AMS Subject Classification: 65K10; 65L05; 81V55

1. Introduction

The purpose of this paper is to describe an efficient algorithm for simulation of light-
induced molecular transformations. The simulation seeks to follow the relaxation
path of a molecule after excitation by light. The simulator is a predictive tool to
see if light excitation and subsequent return to the unexcited or ground state will
produce a different configuration than the initial one.

We simulate the results of the excitation, rather than the excitation itself. The
excitation will change the quantum state of a molecule. Our objective is to design
software that will let one explore the possible changes in a molecule after a sequence
of excitations.

The goals of the simulation are not only to identify the end point, but to report
the entire path in an high-dimensional configuration space so that one can look for
nearby paths to interesting configurations and examine the energy landscape near
the path to see if low energy barriers make jumping to a different path possible.
We have used earlier versions of the algorithm from this paper in previous work
[11–13] and our software has also been applied to sensors in [4].

Our approach uses the Smolyak sparse interpolation [19] method to build a surro-
gate model of an expensive molecular dynamics code (in our particular case Gaus-
sian [7]), and uses that model to drive a numerical ODE integrator. In this paper
we describe a new version of the algorithm which incorporates error estimation
and control and response to the performance of Gaussian’s internal optimization.
We then apply the new algorithm to the application from [4] to illustrate the ideas
and demonstrate the quality of the error estimate.

We begin in § 1.1 with a precise statement of the problem and the stages of
model reduction we will need to make a solution computationally tractable. In § 2
we describe the details of the latest version of the method. Finally, in § 3 we give

Version of December 21, 2011. This work has been partially supported by National Science Foundation
Grant CDI-0941253 and Army Research Office Grants W911NF-07-1-0112 and W911NF-11-1-0367.
North Carolina State University, Department of Mathematics, Box 8205, Raleigh, N. C. 27695-8205, USA

(mokrauerd@gmail.com,Tim Kelley@ncsu.edu)

ISSN: 1055-6788 print/ISSN 1029-4937 online
c© 200x Taylor & Francis
DOI: 10.1080/03081080xxxxxxxxx
http://www.informaworld.com

2 MOKRAUER and KELLEY

two examples that illustrate the utility of the software and show how our error
estimates compare with computational results.

1.1. Problem Formulation

The task is to develop a design tool which will simulate molecular changes after
excitation. Ideally, we would do this by computing the ground state, simulating
excitation with a quantum chemistry code (in our case Gaussian [7]), and then
following the gradient descent path in molecular configuration space (bond lengths,
valence angles, and torsion angles).

Molecules of interest can have hundreds of atoms and degrees of freedom. One
cannot vary all of the degrees of freedom at once in a dynamic simulation because
the simulator is too computationally costly. Hence, we must apply several layers of
model reduction.

The first of these is to isolate a few molecular coordinates of particular interest
and vary only those in the dynamic simulation. The simulator computes an energy
E`(p) as a function of a vector of configuration variables (torsion and bond angles)
p ∈ RN and the quantum state ` = 0, 1, We split

p =
(
x
ξ

)
into a low-dimensional vector of design variables x and the remainder ξ. Given `,
we compute the energy E`(x) as a function of x alone via

E`(x) = min
ξ
E`
(
x
ξ

)
(1)

Gaussian approximates the solution of the optimization problem in (1) with a
variant of the the BFGS [3, 5, 6, 8, 9, 17] algorithm.

The objective of this project is to simulate excitation of a molecule from one
quantum state ` to another `′ and the subsequent relaxation to a local minimum of
E`′ . The simulator will do this repeatedly for a sequence of states, beginning and
ending at ` = 0. We seek a sequence of states for which the initial configuration
at the ground state (` = 0) is different from the one at the end of the sequence of
excitations.

For each `, we would ideally compute the local minimum with the gradient de-
scent method, i. e. integrate the dynamics

ẋ = −∇E`(x) (2)

with initial data given either by the ground state configuration (for ` = 0 at
the start of the simulation) or by the result of excitation from a local minimum
at another state. The evaluation of ∇E` is too expensive to drive the numerical
solution of (2), so we apply a second level of model reduction and replace E` with a
piecewise polynomial interpolant. This is sufficient, if done carefully, to solve simple
problems with as many as two degrees of freedom (i. e. ` ∈ R2), and we report on
results with a simple two-dimensional spline interpolation in [11, 12]. The problems
with such an interpolation are that the number of nodes increases exponentially
with the number of degrees of freedom (the size of x) and one must take care
with the ordering of the evaluation of the nodes to make sure that the internal
optimization has a sufficiently good initial iteration. The internal optimization in

Sparse Models 3

Gaussian can fail if one does not pay attention to the latter problem.
In this paper we describe our most recent progress in addressing the two problems

listed above. Sparse interpolation [19] will limit the growth in the number of nodes
to a polynomial in the size of x, and we show how to couple sparse interpolation to
an error estimation and control scheme which not only estimates the error in the
dynamics, but also limits the failures in Gaussian’s internal optimization.

1.2. Example: 2-Butene C4H8

In this section we give a simple example with only one degree of freedom. In this
case it is possible to follow the relaxation after excitation by brute force, and this
was done in [10].

This molecule has two stable geometries (cis and trans) for ` = 0, and the
transition path after excitation is well understood [10, 15, 18]. Figure 1 shows the
two configurations. Note that they differ by a rotation of the torsion angle in the
center of the molecule, hence a single degree of freedom will suffice to model the
transition.

(a) (b)

Figure 1. trans(a) and cis(b) 2-Butene

Figure 2 illustrates our independent duplication of the result from [10]. The
arrows starting from the bottom left of the figure show excitation from the ground
state (cis), followed by relaxation to a minimum in the excited state, then a drop
to the ground state and relaxation to a different local minimum (trans).

Figure 2. Simulation with one degree of freedom

4 MOKRAUER and KELLEY

2. Algorithms

Assume that x ∈ Rd. We will approximate E` on hypercubes in Rd, which we will
refer to as “patches”. At present the sides of the patches are parallel to coordinate
axes in our software, but this is not necessary. We will let h denote the length of
the sides of the patch, so the volume of the patch is hd. We will approximate E`
with a polynomial Ek` of degree of exactness k on each patch. Here, by degree of
exactness we mean that the interpolation scheme will reproduce polynomials of
degree k exactly, but may have degree higher than k.

We approximate the dynamics with a numerical integration on the patch of

ẋ = −∇Ek` (x). (3)

The simulations we report in § 3 all use k = 2 and k = 3. We used a standard
Runge-Kutta 45 integration routine [1, 16] to integrate (3). The final step is to
estimate the error of E on the patch and query the status of Gaussian’s internal
optimizer to determine the size of the new patch.

We begin the simulation at ` = 0 with the ground state. The data for the
simulation are

• The molecular data for Gaussian and the ground state.
• A sequence of quantum states {`i}pi=1, where `1 = `p = 0.

The simulation loops over the quantum states, switching from one to the next
when the integration stagnates at a local minimum. We create an initial patch
and integrate (3) with a variable step size Runge-Kutta method [1, 16]. We detect
local minima by terminating the integration when ‖∇Ek` ‖ is sufficiently small and
resolving the local minimum with a Newton iteration. On each patch we will either
terminate on a local minima or the integration will collide with a patch boundary
with one Runge-Kutta within the patch and the next outside. In the former case,
we move to the next quantum state, in the latter we create a new patch located so
that the last Runge-Kutta step in the old patch is on the “incoming” side of the
new one. The size of the new patch depends on an estimate of the error in the old
patch (see § 2.2) and the performance of Gaussian’s internal optimization on the
old patch.

2.1. Sparse Interpolation

On each patch we approximate the energy with a sparse interpolation [2, 14, 19, 20].
We will only sketch the formulae and refer the reader to the literature for the details.
The method begins with interpolations in one dimension at the Chebyshev extrema

xij = − cos
(
π(j − 1)
mi

)
, 1 ≤ j ≤ mi,

where mi = 2i−1 + 1. We let

U i(f)(x) =
mi∑
j=1

f(xij)l
i
j(x)

be the polynomial interpolant of f at the Chebyshev extrema. Here lij are the usual
Lagrange polynomials.

Sparse Models 5

Now let f : Rd → R. Using standard multi-index notation, let

ī = (i1, . . . , id) and |̄i| =
d∑
j=1

ij .

For x = (x1 . . . xd)T define

U ī(f)(x) =
mi1∑
j1=1

· · ·
mid∑
jd=1

f(xi1j1 . . . x
id
jd

)(li1j1(x1) . . . lidjd(xd)). (4)

The sparse interpolation is

A(k, d, f) =
∑

k+1≤|̄i|≤d+k

(−1)d+k−|̄i|
(

d− 1
d+ k − |̄i|

)
U ī, (5)

and the set of nodes Ωk is implicitly defined by (4) and (5). Figure 3 are examples
in d = 2, 3 for degree of exactness k = 5.

(a) (b)

Figure 3. Sparse Grids for k = 5 in two and three dimensions

Our surrogates Ek are polynomial interpolations with degree of exactness k. We
construct them by mapping the patch to [−1, 1]d and using (5).

The important points are

• The Smolyak grids are nested; Ωk ⊂ Ωk+1. So, one can estimate El for any l < k
with no additional work after the evaluation of Ek.

• Ek requires≈ 2kdk/k! evaluations of E. This compares well with the best possible(
d+ k
k

)
≈ dk/k!

2.2. Error Estimation and Control

We control the size of the patch in two ways. The first is to keep the error below
a tolerance τ .

6 MOKRAUER and KELLEY

For a patch of side length h, the error in Ek is O(hk+1). Just as one would do in
a variable step Runge Kutta approach, we estimate the error in Ek by

εk = ‖Ek − E‖RK/‖Ek‖RK ≈ ‖Ek+1 − Ek‖RK/‖Ek‖RK

where the norm is the maximum over the Runge-Kutta steps in the integration. If
the estimate is over τ , we shrink the current patch and recompute the path.

If the error in the current patch is acceptable, we then set

εk = Chk+1 = ‖Ek+1 − Ek‖RK/‖Ek‖RK

and solve for C to obtain the approximation

C̃ =
‖Ek+1 − Ek‖RK
‖Ek‖RKhk+1

.

We estimate the error in the new patch by

ε̃ = C̃hk+1

and set the patch size so that ε̃ = Xτ , so the new patch size is

hnew = .7
(
τ/C̃

)1/(k+1)
.

Gaussian reports the number of internal optimization iterations needed to eval-
uate E at each of the interpolation nodes, and its internal optimizaiton terminates
with failure after 20 iterations If the internal optimization fails, we must rebuild
the patch with a small side length. This is very expensive and wastes the evalu-
ations we did before the failure. To guard against failure we reduce h if the any
the internal optimizations need more than 10 iterations. The safeguarding takes
precedence over the error control, so we reduce the patch size if we are in danger
of having the internal optimization fail, even if the error indicators would allow us
to increase it.

3. Examples

All computations were performed on the high performance computing cluster at
North Carolina State University. Our chassis has 60 quad core Xeon processors with
2GB distributed memory per core and dual gigabit ethernet interconnects. The
operating system is Red Hat Linux version 2.6.18. Potential energy computations
were performed using Gaussian 09. Script editing was done with Python 2.6.5.
Interpolation and optimization was done with Matlab version 7.9.0.529.

In the examples we used k = 2 and k = 3 for the low and high order interpolations
with τ = 10−3.

3.1. Butene Revisited

For two or more degrees of freedom plots like Figure 2 can be difficult to understand,
so we illustrate the progress of the optimization with plots for each of the three
degrees of freedom and the energy. The initial excitation dramatically increases

Sparse Models 7

the energy, after which the molecule relaxes in the new state. The computation
required only five patches.

Figure 4 illustrates the design variables. These are the three angles D1, D2, and
D3. D1, which was the single degree of freedom in the computation in § 1.2, is the
center torsion angle 8− 6− 2− 1, which means one can rotate the molecule on the
6− 2 axis. Similarly D2 is the angle 12− 8− 6− 2 and D3 is 6− 2− 1− 4.

Figure 4. Three degrees of freedom

In Figure 5 we plot the changes in the three coordinates as functions of the
Runge-Kutta step counter. From the figure one sees that D1 changes significantly
after the simulation, which agrees with the results in § 1.2, and that D2 and D3
change little, if at all.

The vertical axis in the energy plots has a maximum energy of zero, which is an
consequence of Gaussian’s energy being in the interval (− inf, 0).

Figure 5. Simulation with three degrees of freedom

In Figure 6 we compare the value of E(x) as computed with a call to Gaussian,

8 MOKRAUER and KELLEY

with the solution of

ẋ = −∇E3(x),

on each of the five patches, again as a function of the Runge-Kutta step on the
patch. This figure is very expensive to create, as we have to do a Gaussian compu-
tation at every Runge-Kutta point and can only exploit parallel Gaussian calls in
a limited way because there are only a few (10 – 20) Runge-Kutta points in each
patch. Contrast this with the parallel execution of Gaussian on the 69 patch nodes
for k = 3.

The error estimate is quite good and the error control keeps the error well below
the tolerance of 10−3.

Figure 6. Testing the error indicator

3.2. Stilbene C14H12

Our final example is stilbene (C14H12) a larger molecule. We include this final
example to show how our approach can handle a molecule with more atoms in the
context of a simulation with more degrees of freedom. The simulation for stilbene
took over 95,000 seconds, more than 50 times the 1800 seconds we needed for
butene.

These results were first reported in [4]. The simulation has five degrees of freedom,
and is so large that we could not make an error plot like the one in Figure 6 in
a reasonable amount of time. In Figure 7 we illustrate the five angular degrees of
freedom.

Figure 8 has plots of the changes in the degrees of freedom and the energy as a
function of the Runge-Kutta step. The excitation at the start of the simulation is
indicated by a vertical line from the ground state (marked with a ∗) to the initial
data for the simulation. D5 changes significantly in the simulation, and Figure 9
illustrates that.

Sparse Models 9

(a) (b) (c)

(d) (e)

Figure 7. The five design angles D1(a), D2(b), D3(c), D4(d), D5(e)

Figure 8. Stilbene simulation with five degrees of freedom

(a) (b)

Figure 9. initial (a) and final (b) states

10 REFERENCES

Acknowledgments

One of the authors (CTK) spoke about this work at the 8th International Confer-
ence on Numerical Optimization and Numerical Linear Algebra, held in Xiamen
China in November of 2011. The author is very grateful to the organizers of that
conference for their hospitality.

References

[1] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and
Differential Algebraic Equations, SIAM, Philadelphia, 1998.

[2] V. Barthelmann, E. Novak, and K. Ritter, High dimensional polynomial interpolation on sparse
grids, Advances in Computational Mathematics, 12 (2000), pp. 273–288.

[3] C. G. Broyden, A new double-rank minimization algorithm, AMS Notices, 16 (1969), p. 670.
[4] A. Byhkovski and D. Woolard, Physics and modeling of DNA-derivative architectures for long-

wavelength bio-sensing, 2011. to appear in Proceedings of CMOS Emerging Technologies 2011,
Whistler, BC, Canada.

[5] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Non-
linear Equations, no. 16 in Classics in Applied Mathematics, SIAM, Philadelphia, 1996.

[6] R. Fletcher, A new approach to variable metric methods, Comput. J., 13 (1970), pp. 317–322.
[7] M. J. Frisch, A. Frisch, F. R. Clemente, and G. W. Trucks, Gaussian 09 User’s Reference,

Gaussian inc., Wallingford, CT, 2009.
[8] D. Goldfarb, A family of variable metric methods derived by variational means, Math. Comp., 24

(1970), pp. 23–26.
[9] C. T. Kelley, Iterative Methods for Optimization, no. 18 in Frontiers in Applied Mathematics, SIAM,

Philadelphia, 1999.
[10] Y. Luo, B. Gelmont, and D. Woolard, Bio-molecular devices for terahertz frequency sensing, in

Molecular and Nano Electronics: Analysis, Design, and Simulation, J. Seminario, ed., 2007, pp. 55–81.
[11] D. Mokrauer, C. T. Kelley, and A. Bykhovski, Parallel computation of surrogate models for

potential energy surfaces, in 2010 International Symposium on Distributed Computing and Applica-
tions to Business, Engineering and Science, Q. Qingping and G. Yucheng, eds., Los Alamitos, CA,
2010, IEEE, pp. 1–4.

[12] , Efficient parallel computation of molecular potential surfaces for the study of light-induced
transition dynamics in multiple coordinates, IEEE Transactions on Nanotechnology, 10 (2011), pp. 70–
74.

[13] , Simulations of light-induced molecular transformations in multiple dimensions with incre-
mental sparse surrogates. to appear in J. Algorithms and Computational Technology, 2011.

[14] E. Novak and K. Ritter, Simple cubature formulas with high polynomial exactness, Constr. Approx.,
15 (1999), pp. 499–522.

[15] I. J. Palmer, I. N. Ragazos, F. Bemardi, M. Olivucci, and M. A. Robb, An mc-scf study of the
s1 and s2 photochemical reactions of benzene, J. Am. Chem. Soc., (1993), pp. 673–682.

[16] L. F. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman and Hall, New
York, 1994.

[17] D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comp., 24
(1970), pp. 647–657.

[18] A. Simeonov, M. Matsushita, E. A. Juban, E. H. Z. Thompson, T. Z. Hoffman, A. E. B. IV,
M. J. Taylor, P. Wirsching, W. Rettig, J. K. McCusker, R. C. Stevens, D. P. Millar, P. G.
Schultz, R. A. Lerner, and K. D. Janda, Blue-fluorescent antibodies, Science, (2000), pp. 307–313.

[19] S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of func-
tions, Soviet Math. Dokl., 4 (1963), pp. 240–243.

[20] G. Wasilkowski and H. Wozniakowski, Explicit cost bounds of algorithms for multivariate tensor
product problems, J. Complexity, 11 (1995), pp. 1–56.

