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ABSTRACT
Simulations of light-induced molecular conformational transformations have
traditionally been limited to a single degree of freedom because of the
complexity of potential energy calculations. We propose a method of
simulation that incrementally builds a surrogate for the potential energy
function by computing gridpoints in parallel. We incorporate Smolyak’s
algorithm for sparse interpolation as the energy surrogates since it keeps
the number of gridpoints at a manageable number. Our multi-dimensional
algorithm is applied to the molecule 2-butene whose transition path is well
known.

1. INTRODUCTION
The nuclei that bond to form a molecule will exist naturally in a geometric
structure that has the least potential energy. A simple molecule is likely to
only have a single conformation that is a minimum energy, but larger
molecules are likely to have multiple structures which have such minima.
When the potential energy of a molecule is modeled as a function of its
nuclear coordinates, then the local minima of that function will be the stable
conformations in which the molecule can exist. The geometry of a molecule
that is made up of N atoms is uniquely determined by 3N − 6 nuclear
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coordinates. Once a geometry has been specified, computing its potential
energy requires finding the orbitals that the electrons associated with those
atoms will occupy.

If a molecule can exist stably in more than one geometry, then it is possible
that there is a reaction which will cause the molecule to transition from one
conformation to the other. One way in which this can occur is through
excitation. If enough energy is added to the system, an electron (or multiple
electrons) may excite to a different orbital of higher energy. The quantities of
energy that cause these excitations to occur are discrete amounts since this is a
quantum phenomena. Once an electron occupies a new orbital, the forces
between that electron and the rest of the molecule will have changed. It is
possible that the potential energy is no longer a local minimum, and if this is
the case, the molecule will reshape itself until a local minimum is reached.
Since the molecule is in an excited state, some of the extra energy that caused
the excitation will eventually be emitted and when that happens an electron
will drop to a lower energy orbital and the molecule will relax again to another
local minimum. If the current geometry differs from the original geometry,
then we have found an energy path that will transition between the stable
conformations.

Prior works simulate this transition with only one or two degrees of freedom
[5]. In this work we develop an algorithm that can simulate these transitions in
higher dimensions. Calculating the potential energy of the molecule as a
function of its geometry is an expensive process which is not always
successful. We addressed this problem in prior work with continuation and pre-
processing [6]. Here we follow the natural relaxation of the molecule by
incrementally interpolating the energy function in an area around the transition
path. We improve the feasible degrees of freedom of the simulation by
implementing a sparse interpolation method that is commonly used in high-
dimensional numerical integration. All of our algorithms are applied to the
molecule 2-butene which has a simple and well understood light-induced
transformation.

Being able to discover molecules that exhibit this phenomena can help in the
production of sensors. The emission of energy that occurs when an electron
drops orbitals will be detectable as light of a specific frequency. If this reaction
can be caused by the presence of other notable substances, then their presence
can be detected by observing the light emission. Similarly this light emission can
be used to cause a chain of biochemical reactions.
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2. SIMULATION WITH 1 DEGREE OF FREEDOM
The potential energy of a molecule of N atoms is a function of 3N – 6 nuclear
coordinates, p, and its quantum state, n.

En (p) n = 0, 1, 2, ... (1)

The quantum states are well ordered

{E
0
(p) ≤ E

1
(p) ≤ E

2
(p) ≤ ...}. (2)

A stable geometry is a local minimum of the energy function on the ground
state where n = 0

E
0
(p) ≤ E

0
(p + δ) ∀δ < ε. (3)

A simple molecule which has two stable conformations is 2-Butene (C4H8)
and they are both pictured in figure 1. 2-Butene has 12 atoms and 30
coordinates, but the main difference between the two conformations is just a
single coordinate. That coordinate is the rotation of the double bond between
the angles labeled 2 and 3. We would like to simplify the energy functions of
the molecule to be functions of this single coordinate. We partition the
coordinate space, p, into the independent variable(s), x, and the remaining
variables, ξ.

p = (x, ξ) (4)

The simplification of the problem from thirty variables to a single variable
allowed the simulation to feasibly be performed on a single computer. In order
to compute the energy for a given value of the single coordinate, all of the other
coordinates must be optimized so that the potential energy at that value is a
minimum

En(x) = min
ξ

En (x, ξ) (5)

In other words, computing potential energy means performing a constrained
optimization. One can perform the simulation by computing potential energy at
a few values between the desired minima and building a surrogate for the
function by interpolation

En(x) ≈ Es
n(x). (6)

Once the surrogate for the potential energy surface (PES) is attained, the path
is easily found by gradient descent as exemplified by figure 2. This path only

Journal of Algorithms & Computational Technology Vol. 6 No. 4 579



required two quantum states E
0
(x) and E

1
(x). We will not need to visit any

other quantum states in this work. Simulation of this reaction for 2-butene with
this single design variable has been done previously by Luo et al [5]. For many
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(a) Trans 2-Butene

(b) Cis 2-Butene

Figure 1. Butene molecule, C4H8.



molecules the assumption of a single dominant coordinate will be unsuccessful
in finding a path between minima. Not only does increasing the size of the
molecule increase the possibility that it will require more degrees of freedom,
but computing the potential energy becomes exponentially more costly.

2.1. Full PES in 2 Degrees of Freedom
In our prior work [7] we chose a fixed step length for each variable and
computed the energy of the molecule at each point on the square grid of length
360° × 360°. This allowed us to use the default cubic spline in Matlab to
interpolate the entire PES. Once the entire surrogate had been constructed we
excited the molecule to a new quantum state. The relaxation of the molecule
was simulated by continuous steepest descent [2, 4], which solves the ordinary
differential equation

x. = –∇En
s(x) (7) 

using ODE45 in Matlab. The gradient is computed as a finite difference of the
surrogate.

The first degree of freedom is the same bond rotation that we used in the
previous section. The additional degree of freedom was the rotation of the central
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Figure 2. 2-Butene transition path in a single degree of freedom.



bond between atoms 2 and 3 pictured in Figure 3. We anticipate applying our
algorithms to larger molecules with structures similar to 2-butene, but instead of
hydrogen atoms bonded to the outer carbons they have benzene rings or other
complicated structures bonded to those structures. We anticipate these rings to
rotate throughout the transition.

This method successfully simulated the reaction with 2 degrees of freedom,
but it is quite inefficient. Figure 4 shows the transition path overlaid on the full
PES. It is clear that most of the surface went unseen by the optimization and
those points were likely unnecessary for the simulation.

3. INCREMENTAL SURFACES
We decreased the number of points in the computation by computing small
patches of the PES incrementally. Starting with an initial geometry, we
computed the energy at gridpoints on a square grid that was much smaller than
the full PES. Once we had a surrogate, we integrated to a local minimum or to
a boundary of the surrogate. When the integrator hit a boundary, we made a new
patch of the surrogate and integrated again. This process continues until a local
minimum is found interior to a patch, then we emit or excite and continue the
process.
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Figure 3. Our second degree of freedom is the rotation of the bond between atoms 
2 and 3.



Using this method to simulate the 2-D path for 2-Butene produced the same
results as the full PES. Figure 5 shows the transition path computed by
incremental surface construction. The entire simulation that included
computing a full PES in figure 4 lasted 3275.66 seconds while the incremental
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Figure 4. Successful transition path for 2-butene simulated on a full PES.



surfaces required only 1404.93 seconds. The speedup is limited by the
continuation scheme for drawing the patch described in [6]. The biggest
drawback to this method comes when we plan to increase the degrees of
freedom. Accurate cubic splines require dense grids and when we increase the
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degrees of freedom, the number of gridpoints for the spline will grow
exponentially.

4. SPARSE INTERPOLATION
The algorithm proposed by Smolyak in 1963 [9] is commonly used in high
dimensional numerical integration [1, 8, 11, 10] for the following reasons:

• The number of nodes grows polynomially with the degrees of freedom.
• The interpolation exhibits polynomial exactness meaning that for every

κ there is a formula so that the interpolation for all polynomials of
degree κ or less is the exact polynomial.

• The nodes are spread throughout space in an unbiased way.
• The formulas for determining the gridpoints are easily calculable.

Smolyak’s algorithm starts with a set of one dimensional interpolation
formulas

(8)

Where lj(x) is the jth Lagrange interpolation polynomial

(9)

Smolyak selects the nodes, {Xm}, so that they are nested. This means that an
interpolation of index m will contain every node from the prior interpolation

{Xm−1
} � {Xm}. (10)

The common choice for nested nodes are the extrema of the Chebyshev
polynomials

(11)

We also define a tensor product between one dimensional interpolation
formulas
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Smolyak’s formula uses a linear combination of tensors of one dimensional
interpolations. For a degree k interpolation in d dimensions the formula is

(13)

(14)

Where z is a multi-index containing the degrees of the one dimensional
interpolations. It is clear why the sets must be nested since the tensor products
of one dimensional interpolations contain interpolations of differing degree. If
these contained different sets of points, the grid would not be nearly as sparse.
An estimate for the number of gridpoints for the interpolation in dimension d of
degree k is

(15)

Instead of using Smolyak’s algorithm we could use a full tensor product
interpolation of the same nodes. For instance, a one dimensional cubic
interpolation requires 4 points. We could use a tensor grid of those 4 points in
d dimensions to build an interpolation which would require 4d gridpoints. Table 1
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Table 1. Cubic Interpolation Points by Dimension and Method.

Dimension Sparse Grid Points Tensor Grid Points

2 29 16

3 69 64

4 137 256

5 241 1024

6 389 4096

7 589 16384

8 849 65536

9 1177 262144

10 1581 1048576



compares the number of Smolyak points for cubic exactness to the number of
tensor points for cubic exactness. Figure 6 shows the 5th degree Smolyak points
along with the tensor grid that would result from the same set of one
dimensional points.
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5. SPARSE INCREMENTAL SURFACES
We have shown in previous work that computing the potential energy at a given
point on the PES requires a nearby optimized structure as an initial input due to
the fact that energy computations are constrained optimizations [?]. Smolyak’s
formula doesn’t translate into a continuation scheme nearly as easily as square
grids so we chose to abandon continuation on the incremental surfaces. This
will limit the size of the grids we use for the surrogates.

We borrow ideas from trust region optimization algorithms [3] to adapt the
length of the patch. We choose a parameter, σ, which is a multiplier for
growing and shrinking the size of the patch. If the value of the reduction of
the energy predicted by the surrogate at the final point of integration on the
patch, pred, is close to the actual reduction of energy, ared, then we multiply
the patch length by σ. Similarly if the two metrics are not close at all, then we
divide the patch length by σ. We will also shrink the patch if the number of
iterations for each gridpoint to converge grows too large, likewise if the
energy does not converge at all. If F(xcur, H) is the function that performs
continuous steepest descent on the current surrogate, this adapting patch
algorithm is

function [xf ]=adapt_patch(x
0
, σ, ε, h

0
,max_iters)

at_min=False, H=h0
while at_min=False do

[at_min,max_it,NaNs,xf ,Êf ]=F(xcur,H)

calculate E(xf )

ared=E(xcur)−E(xf)

pred=E(xcur)−Ê(xf)

if and (max_it≤ max_iters) and (NaNs=0) then

H=σH 

else if or (max_it>max_iters) or (NaNs≠ 0) then

end if
xcur = xf

end while

H =
H
σ

1−
ared
pred

ε(2)













1 −
ared
pred

≤











ε(1)
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Once again we applied our method to 2-butene with the parameter σ = 1.5. The
algorithm once again simulated the transition path which can be seen in Figure 7.
At each iteration the patch size grew. This is due to the fact that 2-butene is a very
simple molecule with a well-understood transition. Once we apply this algorithm
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to more complex molecules we do not expect the surfaces to grow consecutively
to completion. We have also applied our algorithm with a third degree of freedom
to 2-butene. That additional torsion angle can be seen in Figure 8. The energy path
taken by the simulation with three degrees of freedom can be seen in Figure 9, but
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Figure 8. 3rd degree of freedom is the rotation of the bond between atoms 2 and 3.
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we have omitted the scatter plots with an overlaid path due to the difficulty in
visualization. Table 2 demonstrates that the algorithm exhibits good weak
scalability.

6. RESOURCES
The computations in this work were performed on the North Carolina State
University high performance computing cluster. The chassis has 60 quad core
Xeon processors with 2GB distributed memory per core and dual gigabit ethernet
interconnects. The operating system is Red Hat Linux 2.6.9. Potential energy
computations are performed using Gaussian09. Python 2.5.4 performs script
editing, manages parallel submissions of energy calculations, and controls the
patch size. Figures and optimizations were produced in Matlab 7.8.0.347.

7. CONCLUSIONS
Our method of incremental surface construction decreases the compute time
necessary for simulating the transition path in multiple dimensions. By using
Smolyak’s algorithm to determine the gridpoints at which to evaluate the
potential energy, we have greatly increased the number of degrees of freedom
that these simulations may incorporate. Our method of adapting the patch size
at each increment will decrease the number of patches that the simulation will
need to compute.
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