Sparse Interpolatory Reduced-Order Models for Simulation of Light-Induced Molecular Transformations

> C. T. Kelley, David Mokrauer, Alexei Bykhovski NC State University tim_kelley@ncsu.edu Supported by ARO.

> > ICNONLA 2011, November 8, 2011

Outline

1 Objectives

- Chemistry Application
- Dynamic Formulation
- **2** Example Butene C_4H_8
- 3 Sparse Interpolation
- 4 Larger Molecule: Stilbene $C_{14}H_{12}$
- 5 Software: LITES

6 Conclusions

Chemistry Application

Molecular Geometry

- Stationary nuclei in cloud of moving electrons.
- *N* atoms located by 3*N* − 6 coordinates (Wilson et al 1955) torsion and bond angles
- Atoms move in response to external forces, such as light.
- Stable configurations (the only ones which occur in nature) are local minimizers of potential energy *E*.

- ${\ensuremath{\mathcal{E}}}$ depends on
 - Configuration $p \in R^N$.
 - Quantum state $n = 0, 1, \dots$

Quantum states are ordered

$$\mathcal{E}_0(p) \leq \mathcal{E}_1(p) \leq \mathcal{E}_2(p) \leq ...$$

and (as you will hear many more times) the local minimizers of \mathcal{E}_n are the only configurations in nature.

2-butene has 2 stable geometries for n = 0

Figure: trans 2-butene

Figure: cis 2-butene

- Begin with a stable ground state p local minimizer of E₀
- Excite the molecule with light shifting the state to n = 1, say
- p may not be a local minimizer of \mathcal{E}_1

This is an opportunity to apply light to change the configuration.

Chemistry Application

Results of Excitation

Excitation changes orbital, thus changing interatomic forces

Figure: Highest Occupied Molecular Orbital

Figure: Lowest Unoccupied Molecular Orbital

Simulate this:

- begin at p_0 in state 0
- excite to new state
- relax to local minimum in new state
- emit energy and return to state 0
- relax to minimum p_f
- Goal: $p_f \neq p_0$

Applications: sensors, solar power, ...

Chemistry Application

- Compute *E* with a good quantum chemistry code.
 We use Gaussian.
- Compute relaxation after excitation by integrating

$$p' = -\nabla \mathcal{E}(p)$$

and thereby optimize as nature does it.

Using dynamics-unaware method can lead to incorrect results.

Chemistry Application

Computational Reality: Reduction Step 1

- Molecules have 100s of atoms and 100s of degrees of freedom (torsion angles)
- We can't vary all of them and must pick a few, and must solve an optimization problem to resolve the rest.
- So we need some collaborators to guide us as we reduce the number of degrees of freedom.
- The collaborators need us to tell them if they kept to many or omitted some degrees of freedom.

Chemistry Application

Reduction in Problem Size

- $p = (x, \xi)$ molecular coordinates; $\mathcal{E}(p)$ energy.
- x are the design coordinates
- E(x) energy function of x

Fix x; let Gaussian solve

$$\min_{\xi} \mathcal{E}(x,\xi)$$

to find $\xi = \xi(x)$.

- Evaluation of *E* is very expensive; ∇E out of the question.
- Internal iteration requires good initial iterate. Failure is very costly.

2-butene Excitation

Success with a single DOF [Luo, Gelmont, Woolard (2007)]

Figure: 1 variable simulation of 2-butene

Can you see why randomness might be needed?

- Prior work used internal (expensive) Gaussian continuation.
- Gaussian will only handle one DOF.
- Internal Gaussian optimization can fail.

Dynamic Formulation

What we'd like to do.

- Begin with stable (local min) of \mathcal{E} in the ground state.
- Excite the molecule and move through a sequence of excited states.
- Simulate relaxation in excited state via x' = -∇E(x) and find local min.
- Interrupt dynamics in mid-stream if something interesting happens.
- Return to ground state and (maybe) find different stable state.
- Query the optimization landscape afterwards to
 - Look for design variables that did not change much or slave variables that did.
 - Add some randomness to capture thermal fluctuations.

• • = • • = •

< □ > < 同

Dynamic Formulation

What we can do. Reduction: Step 2

Interpolate E in the region of interest with x_0 on boundary

- Evaluate E on a mesh
- Organize the evaluations so that
 - Internal optimization for ξ converges (ie has good initial data)
 - As many evaluations as possible done in parallel
- Interpolate E to get E^S
- Use the interpolant to drive the dynamics and solve

$$x' = -\nabla E^S$$

Your bad idea alarm may be going off because we have a ...

Dynamic Formulation

"Look-Ahead" IVP integrator

- Normally insane for u' = f because
 - you'd visit places the dynamics never see,
 - waste many calls to f, and
 - the complexity would be a killer for high dimensional problems.
- But we do well with this because
 - serial evaluation of f in an normal integrator performs poorly,
 - our dimension ≤ 10 is low,
 - our function is REALLY expensive, and
 - look-ahead parallelizes easily.

-Example Butene C₄H₈

Example Butene C_4H_8 ; D1/D2 coordinates

Rotate angles D1 (8,6-2,1) and D2 (11,8-6,2)

Example Butene C_4H_8

Tensor Product Mesh Results

Good Scalability, Too Many Gaussians, Reduction: step 3

Solution: Local cubic interpolation, one patch at a time.

- Integrate dynamics on each patch.
- Locate and evalute on the next one.
- Potential for error estimation and control.
- Timings: Full Surface $\approx 2 \times$ patch
- Parallel performance was worse, but would improve with more degrees of freedom.
- Exponential complexity still there.

Faster Parallel Evaluation in Two Dimensions

Sparse Interpolation: Reduction: step 4

Tensor product grids are hopeless for more than two design variables.

We shamelessly steal an idea (Smolyak, 1963) from high-dimensional integration.

- Generate mesh in R^d so that integration has degree of exactness k
- Symmetric about coordinate lines and diagonals
- Nested meshes as k increases

so we can estimate error efficiently.

Current approach: uses patches with sparse grids.

Building a Sparse Interplation: I

Barthelmann, Novak, Ritter (2000)

• Chebyshev extrema for $m_1 = 1, m_2 = 3, ..., m_i = 2^{i-1} + 1$

•
$$\mathcal{X}^{i} = \{x_{j}^{i}\}_{j=1}^{m_{i}}$$

 $x_{j}^{i} = -\cos\left(\frac{\pi(j-1)}{m_{i}}\right).$

- Let $\mathcal{U}^{i}(f)(x) = \sum_{j=1}^{m_{i}} f(x_{j}^{i}) l_{j}^{i}(x)$ where l_{j}^{i} are the Lagrange interpolating polynomials.
- And now it's time for several variables

Building a Sparse Interpolation: II

• For
$$f : R^d \to R$$
, $\overline{\mathbf{i}} = (i_1, \dots, i_d)$, $|\overline{\mathbf{i}}| = \sum_{j=1}^d i_j$,
 $x = (x_1 \dots x_d)^T$
 $\mathcal{U}^{\overline{\mathbf{i}}}(f)(x) = \sum_{j_1=1}^{m_{i_1}} \cdots \sum_{j_d=1}^{m_{i_d}} f(x_{j_1}^{i_1} \dots x_{j_d}^{i_d}) (I_{j_1}^{i_1}(x_1) \dots I_{j_d}^{i_d}(x_d))$

• Combine a few of the $\mathcal{U}^{\overline{i}}$ interpolants to get ...

Building a Sparse Interpolation: III

$$\mathcal{A}(k,d) = \sum_{k+1 \leq |\mathbf{\overline{i}}| \leq d+k} (-1)^{d+k-|\mathbf{\overline{i}}|} \left(egin{array}{c} d-1 \ d+k-|\mathbf{\overline{i}}| \end{array}
ight) \mathcal{U}^{\mathbf{\overline{i}}}$$

Does all kinds of good stuff:

- Interpolates polynomials of degree k exactly
- Many fewer high-order cross terms than tensor products
- Uses sparse grids

Complexity:
$$x \in R^d$$

Best possible for degree k

$$\left(egin{array}{c} d+k \ k \end{array}
ight) pprox d^k/k!$$
 for large d

- Tensor product grid has $(k+1)^d$ points.
- Sparse grid has $\approx 2^k d^k / k!$ points

Cubic interpolation for varying d.Dimension2345678910Grid Size296913724138958984911771581

Two-dimensional Sparse Grid

Three-dimensional Sparse Grid

- Begin with x_c , $E(x_c)$, and patch size h
- Interpolate on patch to build surrogate.
 If evaluation fails, reduce h and try again.
- Integrate dynamics using surrogate E^{S} until either
 - you hit a patch boundary or
 - the itegration terminates at a local minimum (of the surrogate).
- Figure out how well you did and adjust the patch size.

Patch Size Control I

Method until September 2011.

- Evaluate E at the end of the path x₊
- Compare ared = $E(x_c) E(x_+)$ to pred = $E(x_c) E^S(x_+)$

We want ared/pred to be near 1

- If ared/pred is near 1 and x_+ is on the boundary, $h \rightarrow 2h$.
- If ared/pred is far from $1 h \rightarrow h/2$.
- Otherwise leave *h* alone.

This is a crude form of error estimation.

Problem: evaluation at interpolation nodes fails too often.

Computing: I

Hardware: IBM Blade Center

- 32 blades; dual quad-core Xenons = 256 cores
- Infiniband network
- Parallelism:
 - Energy evaluations at each node in parallel.
 - Gaussian uses 4-way parallelism on each blade
 - 64 Gaussian calls at once. Managed with Python.

Example Butene C_4H_8 ; D1/D2/D3 coordinates

Rotate angles D1 (8,6 – 2,1), D2 (12,8 – 6,2), D3 (4,1 – 2,6)

Kelley, Mokrauer, Bykhovski

Sparse Interpolation

Patch from 2-butene Computation

<u> </u>	-	
b norco	Intorr	olation
aua se		

Success

Kelley, Mokrauer, Bykhovski

•

.

٠.

. .

Parallel Performance

degree	# points	cores	time(sec)	
2	25	13	190.96	
3	69	39	194.05	

э

Image: Image:

э

Something Larger: $(C_{14}H_{12})$ Stilbene-1

Something Larger: Stilbene-2

Something Larger: Stilbene-3

Something Larger: Stilbene-4

Something Larger: Stilbene-5

Larger Molecule: Stilbene $C_{14}H_{12}$

The Path

Bottom Line

	D1	D2	D3	D4	D5	Energy
Start	-6.00	140.00	-40.00	140.00	-40.00	-2343.94
End	-8.94	153.57	-28.23	153.58	-28.22	-2343.97

э

< ∃→

Image: A math a math

OLD

Kelley, Mokrauer, Bykhovski

э

-

Image: A mathematical states and a mathem

NEW

Kelley, Mokrauer, Bykhovski

э

э

Image: A mathematical states and a mathem

Patch Size Control II

Respond to Internal Optimization:

- Internal iteration limit (BFGS) of 30.
- Shrink patch when max observed count > 15 Shrink by how much?
- Allow patch to grow when max observed count < 5 Growth will also depend on error estimation.

Patch Size Control III

Degree k sparse interpolant E^k has error

$$\epsilon_k = O(h^{k+1})$$

and ∇E^k has order $O(h^k)$. Grids Ω^k are nested ($\Omega^k \subset \Omega^{k+1}$). Estimate error of degree k approximation before the integration:

- Compute E^k and E^{k+1} from the evaluations on Ω^{k+1} ,
- Computed estimate error $\bar{\epsilon}_k$ by $||E^k E^{k+1}||_{\infty}$ over most recent trajectory

Patch Size Control IV

Then,

Base the integration on ∇E^{k+1} (order extrapolation).

■ Use RK45 ideas to control patch size from desired error.

Example: Want energy error $\leq \tau$. If $\bar{\epsilon}_k \approx \epsilon_k \approx Ch^{k+1}$ then $C \approx \bar{\epsilon}_k/h^{k+1}$. Pick h_{new} to force $\epsilon_k \leq \tau$ by $h_{new} < (\tau/C)^{1/(k+1)}$.

LITES

Light-Induced Transition Effects Simulator

- Phython driver + numerics
- Error and patch-size control
- Manages calls to Gaussian in parallel
- Documentation aimed at chemists.
 Now in beta-test with a real chemist.
- Uses Gaussian data structure: Z-matrix
 Easy to swap Gaussian for something else.

LITES I/O

Input:

- ordered list of excited states beginning and ending at 0
- Initial ground state configuration

Output:

- Final point + energy + configuration
- Z-matrix at each interpolation node
- Z-matrix at start/end of each patch

LITES Results: 2-butene Revisited

Kelley, Mokrauer, Bykhovski

Sparse Interpolation

Xiamen, 2011 49 / 57

2-butene 3D Simulation Accuracy

 $\delta = 10^{-3}$

Figure: Actual vs Approximate Error on each Patch

Kelley, Mokrauer, Bykhovski

Sparse Interpolation

LITES Results: Azobenze

Figure: Cis-Azobenzene

Figure: Trans-Azobenzene

Cis-Azobenzene Simulation

Figure: Cis returns to Cis

Sparse Interpolation

3 🕨 🖌 3

Trans-Azobenzene Simulation

Figure: Trans returns to Trans

Kelley, Mokrauer, Bykhovski

Sparse Interpolation

- The tool works, but we did not get what we wanted.
- Chemistry expertise is needed to
 - identify the correct design variables,
 - chose the sequence of exited states, and
 - figure out the frequency and pulse rate to get to these states.

- Include thermal effects (randomness).
- Query patches for low barriers (more randomness).
- Experiments.

Opportunities in Quantum Chemistry/Physics

- Many opportunities for mathematicians.
- You must have professional help (ie collaborators).
- Leaning curve is steep (be patient).
- You will function with very incomplete information.

- Sparse interpolatory surrogates for molecular simulation.
- Application: sensors, solar power
- Natural parallel evaluation of Gaussian.
- Good speedup for 100s of cores.