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Sources

• Nelder+Mead, Hooke+Jeeves

• Dennis (+) Audet (+) Torczon (+) Lewis

• Richard Carter

• Margaret Wright

• Conn, Toint, Scheinberg

• Don Jones

• 106 others

C. T. Kelley – p.3



Collaborators

• IFFCO developers from NCSU Math:
Tony Choi, Owen Eslinger, Paul Gilmore,
Alton Patrick, Dan Finkel
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Optimization Landscapes

Semiconductors
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Applications: semiconductor, automotive, aeronautical,
environmental, energy, . . .
Objectives:

• Useful decrease in the function

• Capture smooth part; avoid entrapment by local minima
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What are the problems?

• Optimization/parameter identification
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What are the problems?

• Optimization/parameter identification

• Goals: useful improvement for a few calls to the
objective/constraint functions

• Black-box simulators
• No source code or too much source code
• Non-differentiable control structures

eg if-then
• Discontinuities

inner iterations, adaptivity
• Non-smooth/discontinuous physics

shocks, phase transitions, . . .

• Non-deterministic simulators
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Optimization Problem

min
x∈Ω

f (x)

• Conventional Newton-based methods can fail if f is
• multi-modal,
• non-convex,
• discontinuous,
• non-deterministic, or if

• Ω is not determined by smooth inequalities.

Sampling methods attempt to address these problems.
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Stencil-based sampling methods

• Begin with a base point x.

• Examine points on a stencil;
reject or fix points not in Ω.

• Determine location and/or shape of new stencil.

• If f (x) is smallest, perhaps shrink the stencil.

C. T. Kelley – p.8



Stencil-based sampling methods

• Begin with a base point x.

• Examine points on a stencil;
reject or fix points not in Ω.

• Determine location and/or shape of new stencil.

• If f (x) is smallest, perhaps shrink the stencil.

Examples: Grid-based: Coordinate Search, Hooke-Jeeves,
(P)MDS, GPS
Grid-free: Nelder-Mead, Implicit Filtering
But not: DIRECT, GA, SA

C. T. Kelley – p.8



Stencil-based sampling methods

• Begin with a base point x.

• Examine points on a stencil;
reject or fix points not in Ω.

• Determine location and/or shape of new stencil.

• If f (x) is smallest, perhaps shrink the stencil.

Examples: Grid-based: Coordinate Search, Hooke-Jeeves,
(P)MDS, GPS
Grid-free: Nelder-Mead, Implicit Filtering
But not: DIRECT, GA, SA

This is not global optimization.
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Brothers and sisters, beware!
Learn from the world’s easiest problem.

Minimize xT x with a sampling method and see that . . .

• Sampling methods are not substitutes for Newton’s
method.
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Brothers and sisters, beware!
Learn from the world’s easiest problem.

Minimize xT x with a sampling method and see that . . .

• Sampling methods are not substitutes for Newton’s
method.
• Many do poorly for very easy problems.

We can fix some of that.
• They need many calls to f even when doing well.

Very expensive, especially for large problems.

• The theory is descriptive rather than predictive.

• The iteration will stagnate if you use smaller stencils
that the quality of f will support.
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Example: coordinate search

Sample f at x on a stencil centered at x, scale=h

S(x,h) = {x±hei}

• Move to the best point.

• If x is the best point, reduce h.

• Break ties any way you like.

Necessary Conditions: no legal downhill direction
(which is why you reduce h).
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What if x is the best point?
If f is smooth and

f (x)≤minz∈S(x,h) f (z) (stencil failure)
then
‖∇ f (x)‖= O(h) which leads to . . .
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What if x is the best point?
If f is smooth and

f (x)≤minz∈S(x,h) f (z) (stencil failure)
then
‖∇ f (x)‖= O(h) which leads to . . .

Theory: If (xn,hn) are the points/scales generated by
coordinate search and f has bounded level sets, then

• hn→ 0 (finitely many grid points/level) and therefore

• any limit point of {xn} is a critical point of f .

But these are not methods for smooth problems.
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Coordinate Search: Start
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Coordinate Search: Move
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Coordinate Search: Stencil Failure
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Coordinate Search: Shrink/Move
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Coordinate Search: Termination
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Elaborations used in practice

• Take the first better point and move (HJ, MDS, GPS)

• Adapt the shape of the stencil (NM)

• Use a stencil with fewer points (NM,IF,GPS)

• Build a model gradient (IF,DFO)

• Build a model Hessian (IF,DFO)

• Parallel evaluation of f (IF,PDS,GPS)

• Bound constraints built in (HJ,IF,GPS)

• Restarts (almost everybody)

• Categorical variables (GPS)

If you wind up with coordinate search if the elaborations fail,
then you get a convergence result.
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Model Problem
motivated by the pictures

min
RN

f

f = fs +φ

• fs smooth, easy to minimize; φ noise

• N is small, f is typically costly to evaluate.

• f has multiple local minima
which trap most gradient-based algorithms.
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How much should this cost?

• Suppose f is a convex quadratic.
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How much should this cost?

• Suppose f is a convex quadratic.
• Centered differences are exact.
• One gradient evaluation costs 2N +1 calls to f .
• CG terminates after N gradients.

• So, for a very easy problem,
• Best possible is 2N2 +O(N) calls to f .
• Be happy with O(N2).

• But, Newton needs one gradient+Hessian.
Don’t discard your conventional codes.
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Convergence?

Stencil failure implies that

‖∇ fs(xn)‖= O

(

hn +
‖φ‖S(xn,hn)

hn

)

where
‖φ‖S(x,h) = max

z∈S
|φ(z)|.
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Bottom line

So, if (xn,hn) are the points/scales generated by coordinate
search, f has bounded level sets, and

lim
n→∞

(hn +h−1
n ‖φ‖S(x,hn)) = 0

then

• hn→ 0 (finitely many grid points) and therefore

• any limit point of {xn} is a critical point of f .
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Limits

• Theory is descriptive, not predictive.
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Limits

• Theory is descriptive, not predictive.
• Most problems you care about don’t satisfy

assumptions.
• The sequence of useful scales is finite.

The iteration will stagnate.

• Theory is behind practice.

• Practice is behind applications.

Even so, the theory provides useful guidance.
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Implicit Filtering

Accelerate coordinate search with a quasi-Newton method.
imfilter (x, f , pmax,τ ,{hn},amax)

for k = 0, . . . do
fdquasi(x, f , pmax,τ ,hn,amax)

end for
pmax, τ , amax are termination parameters

fdquasi = finite difference quasi-Newton method using a
central difference gradient ∇h f .
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fdquasi(x, f , pmax,τ ,h,amax)

p = 1

while p≤ pmax and ‖∇h f (x)‖ ≥ τh do
compute f and ∇h f

terminate with success on stencil failure

update the model Hessian H if appropriate; solve

Hd =−∇h f (x)

use a backtracking line search, with at most amax backtracks,

to find a step length λ
Failure: leave x unchanged if > amax backtracks

x← x+λd; p← p+1

end while
Failure: if p > pmax leave x unchanged
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Termination

Calculus implies that

∇h f (x) = ∇ fs(x)+O(h2+‖φ‖S(x,h)/h).

So if fdquasi terminates with success:

• ‖∇h f (x)‖ ≤ τh (small gradient condition)

• Stencil failure

(i. e. there is no line search or outer iteration failure)
then

‖∇ fs(x)‖= O(h+‖φ‖S(x,h)/h)

leading to . . .
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Basic Convergence Theorem

Let (xn,hn) be the sequence from implicit filtering.
If

• ∇ fs is Lipschitz continuous.

• limn→∞(hn +h−1
n ‖φ‖S(x,hn)) = 0

• fdquasi terminates with success for infinitely many n.

then any limit point of {xn} is a critical point of fs.
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Basic Convergence Theorem

Let (xn,hn) be the sequence from implicit filtering.
If

• ∇ fs is Lipschitz continuous.

• limn→∞(hn +h−1
n ‖φ‖S(x,hn)) = 0

• fdquasi terminates with success for infinitely many n.

then any limit point of {xn} is a critical point of fs.

• Same theory as coordinate search,
unless you use a clever {hn}

• Very different in practice.
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Model Hessians

• BFGS for unconstrained

• Projected SR1 for bound constraints

• Gauss-Newton for least squares
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then (BFGS, GN) you get superlinear convergence.
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Model Hessians

• BFGS for unconstrained

• Projected SR1 for bound constraints

• Gauss-Newton for least squares

Theory: If

• φ decays sufficiently rapidly near optimality

• hn→ 0 fast enough

then (BFGS, GN) you get superlinear convergence.

Practice: the method performs poorly without the
quasi-Newton Hessian.
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How to get the software

• IFFCO: Implicit Filtering For Constrained Optimization

• New version released May, 2001
MPI/PVM/Serial

• ftp to ftp.math.ncsu.edu in
FTP/kelley/iffco/IFFCO.tar.gz or email to
Tim_Kelley@ncsu.edu
http://www4.ncsu.edu/˜ctk
http://www4.ncsu.edu/˜ctk/iffco.html

• Next major version, 2005.
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Example: Hydraulic Capture

• Control flow of contaminants in groundwater.
• Keep plume on site.
• Keep concentrations at acceptable levels.
• Minimize cost, volume of contaminant,

contaminant concentration . . .

• Control flow and pressure.
• Municipal water supplies.
• Agriculture.
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Many approaches

• Tightly coupled simulation/optimization (Shoemaker)

• GAs (Mayer, Pinder, Minkser, Yeh . . . )

• Surrogates: response surface, neural nets

Our objectives:

•• Examine many formulation, simulator, optimizer
combinations in a portable way.

• Build testbed for both groundwater and optimization
communities.

• Design new approaches.

Today: one problem/simulator/optimizer triple.
C. T. Kelley – p.26



What we do.

• Black-box optimization:
Use accepted, widely-used, production 3D simulators.
• Improved portability/documentation relative to

research codes.
• No guarantee of differentiability wrt design

variables.

• Put problems/solutions on the web.
http://www4.ncsu.edu/˜ctk/community.html
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Flow in the saturated zone

Ss
∂h
∂ t

= ∇ · (K∇h)+S ,

Data:

• BC, IC, spatial domain Ω
• Ss (specific storage coefficient)

• K (hydraulic conductivity)

• S is the souce/sink term,
computed from the design variables.

Output: h (hydraulic head)
Typical simulators: ADH, FEMWATER, MODFLOW.
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Species Transport

∂θC
∂ t

= ∇ · (θD ·∇C)−∇ · (θvC)+S
C.

Data: porosity θ , interphase
Design: S C mass sources/sinks

• C is concentration, solution of PDE;

• v is velocity, computed from h;

• D is the dispersion tensor, computed from h.

C. T. Kelley – p.29



Computing the fluid velocity, v

Darcy’s law says

θv =
k
µ

(∇p+ρg∇z)

• p = ρg(h− z): fluid pressure

• k: intrinsic permeability; µ : dynamic viscosity

• ρ: density; g: gravitational acceleration

• ∇z: vector in vertical direction
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What’s D

Di j = δi jαt |v|+(αl−αt)
viv j

|v|
+δi jτD∗

• αl, αt : longitudinal/transverse dispersivities

• τ : tortuosity of the porous medium

• D∗: free liquid diffusivity.
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Design variables

Number and location of wells, pumping rates.
Pumping rates and well locations go in the source term for
flow

∫

Ω
S (t)dΩ =

n

∑
i=1

Qi

and for concentration
∫

Ω
S

C(t)dΩ =
n

∑
i=1

C(xi)Qi.

Examples:

• Sum of δ functions at well locations.

• Well model with well diameter, well type, ...
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Example: Hydraulic Capture

Minimize total cost:

f T (Q) =
n

∑
i=1

c0db0
i + ∑

Qi<−10−6

c1|Qi
m|b1(zgs−hmin)b2

︸ ︷︷ ︸

f c

+

∫ t f

0

(

∑
i,Qi<−10−6

c2Qi(hi− zgs)+ ∑
i,Qi>10−6

c3Qi

)

dt

︸ ︷︷ ︸

f o

,

to keep a contaminant inside a “capture zone”.
Ω = [0,1000]× [0,1000]
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Notation

• {(xi,yi)} are well locations.

• Qi is pumping rate
(> 0 for injection, < 0 for extraction.

• di is depth of well i

• hi is head at well i (MODFLOW)

• zgs is elevation of ground surface

• Qm is design pumping rate.

• hmin is minimum allowable pumping rate.
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Boundary conditions: Unconfined aquifer

∂h
∂x

∣
∣
∣
∣
x=0

=
∂h
∂y

∣
∣
∣
∣
y=0

=
∂h
∂ z

∣
∣
∣
∣
z=0

= 0, t > 0

K
∂h
∂ z

(x,y,z = h, t > 0) =−1.903×10−8 (m/s).

h(1000,y,z, t > 0) = 20−0.001y(m),
h(x,1000,z, t > 0) = 20−0.001x(m),
h(x,y,z,0) = hs.
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Constraints I

Simple bounds:

Qemax ≤ Qi ≤ Qimax, i = 1, ...,n

Limits on the pumps.
Simple linear inequality:

∑
i

Qi ≥ Qmax
T ,

limit on total net extraction rate.
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Constraints II

Keep wells away from Dirichlet boundary

0≤ xi,yi ≤ 800.

Bounds on h

hmin ≤ hi ≤ hmax, i = 1, ...,n

No dry holes.
Velocity Highly nonlinear function of well locations.
50×50×10 grid.
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Formulation Decisions I

• Contain plume: constrain velocity at zone boundary.
Test velocity at five downstream locations.
Approximate velocity with difference of h.
Five new constraints.
Need only flow code. Better simulations in progress.

• Implicit filtering deals with bounds naturally.

• Treat constraints as yes/no for sampling method
• Stratify by cost.
• Avoid simulator if infeasible wrt cheap (linear)

constraints.

• Well is de-installed if pumping rate is suff small.
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Formulation Decisions II

• Discontinuous objective.
• 50×50×10 grid. Wells must be on grid nodes.

Move to nearest.
• Remove well from array (di = 0) if pumping rate is

too small.

• Treat head constraint and linear constraints
as hidden or yes-no.

• Initial iterate: two extraction, two injection
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Landscapes
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Other Approaches
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Community Problems

• Suite of problems in groundwater remediation
3D, flow+transport, varying difficulty.

• We provide or point to simulators/optimization codes
that will produce a formulation and a solution.

• No pretense that formulation or solution is best
possible.

• Portable, good testbed for optimization codes.
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How to get the Community Problems

• Constantly updated on
http://www4.ncsu.edu/˜ctk/community.html

• Packages include problems, makefiles, IFFCO
example.
You need to get the simulators; we tell you how.

• Tested on
• g77: Solaris, Red Hat 7.3,8.0, MAC OSX, IBM-SP
• MPI: IBM-SP, Dell+Red Hat 8.0

• Three problems in place (only MODFLOW).

• New problems under construction.

• Massive comparison in progress
GA, NOMAD, Boeing DE, DIRECT, APPS
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