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Outline

• Fast introduction to compact fixed point problems

• Newton-GMRES and multilevel Newton-GMRES

• Path following: introduction
Nonlinear solvers
Pseudo-arclength continuation

• Three examples:
• integral equation

explicit integral operator
• Wigner-Poisson Equation for RTDs
• time-stepper for parabolic pde

implicit integral operator

• Multilevel method.

C. T. Kelley – p.2



Compact Fixed Point Problems

We’re worried about problems like

F(u) = u−K (u) = 0,

where

• F is Lipschitz continuously Frechét differentiable on a
Banach space X .

• The “compact” part means that K ′ is a compact linear
map on X .

• We want to exploit the compactness to design fast
solvers.
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How to exploit compactness

• Discretization

• Almost every reasonable scheme works, but
• some approximations to K ′ converge in norm.

• Solvers
• Krylov solvers need no preconditioning (in theory).

• Multilevel methods are easy to design.
• No smoothers are needed.

• Fast evaluation (O(N log(N)) is common.

• Newton-Krylov, Newton-MG nonlinear solvers work
with no surprises (most of the time).
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World’s Easiest Example

(I−K)u(x) = u(x)−
∫ 1

0
k(x,y)u(y)dy = f (x),

f ∈C[0,1], k ∈C([0,1]× [0,1])
Discretization: Vh = piecewise linears/piecewise constants

uh(x)−Khuh(x) = uh(x)−
∫ 1

0
kh(x,y)u

h(y)dy = Ph f (x)

where,

kh(x,y) =
Nh

∑
i, j=1

k(xi,x j)φi(x)φ j(y)

Ph is a projection onto Vh, and we seek uh ∈Vh.
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Properties of Discretization

• Kh operates on the function space

• Kh→ K in the operator norm

• Lots of flexibility in Ph
Strong convergence to I is all you need.

• If I−K is nonsingular, then

uh = (I−Kh)
−1Ph f → (I−K)−1 f

Solve finite dimensional system for nodal values.

• Other choices of Kh are possible
Standard quadrature rule + fine-to-coarse by averaging
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Performance of GMRES

Avoid the O(N3
h ) cost of a direct solver, and compute

uh = (I−Kh)
−1Ph f =

Nh

∑
i=1

uh
i φi ∈Vh.

with GMRES.

• Continuous problem: superlinear convergence

• Discrete problem: mesh independent performance

• Cost: One Khv evaluation/linear iteration
Think Nh logNh work if done slickly.

Nested iteration (aka grid sequencing) is a good idea.
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Multilevel Method

Since Kh→ K in the operator norm,

• (I−KH) (h << H) might be a good preconditioner for
GMRES

• Richardson iteration is a better idea thanks to LOW
STORAGE.

u← u− (I−KH)−1((I−Kh)u−Ph f )

• H suff small implies
• Krylovs independent of H.
• One iteration/level suffices.
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Nonlinear Problems

Generalization to the nonlinear case is easy,

u← u− (I−K
′

H(uH))−1Fh(u)

if you’re careful about the fine-to-coarse transfer.
If coarse mesh suff fine,

• Krylovs/Newton independent of H

• one Newton/level suffices.
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Nested Iteration: Bottom up

h = H, i = 0
Solve FH(uH) = 0 to high accuracy.
u← uH

for i = 1, . . .m do
h← h/2
u← u− (I−K ′

H(uH))−1Fh(u)
end for

• All the linear solver work is on the coarse mesh.

• Only two grids H and h active at any time.

• Cost of solve to truncation error:
< 3 fine mesh evals, depending on cost of Kh
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Path Following

F : X × [a,b], F smooth, X a Banach space.
Objective: Solve F(u,λ ) = 0 for λ ∈ [a,b]
Obvious approach:

Set λ = a, solve F(u,λ ) = 0 with
Newton-(MG, GMRES, . . . ) to obtain u0 = u(λ ).
while λ < b do

Set λ = λ + dλ .
Solve F(u,λ ) = 0 with u0 as the initial iterate.
u0← u(λ )

end while

C. T. Kelley – p.11



What’s the problem?

• Multiple solutions, hysteresis

• No solutions

A fix: Pseudo-arclength continuation.
Set x = (u,λ ) and solve G(x,s) = 0, where, for example

G(x,s) =

(

F
N

)

=

(

F(u(s),λ (s))
u̇T (u−u0)+ λ̇ T (λ −λ0)− (s− s0)

)

.

s is an artificial “arclength” parameter.
u0 and λ0 are from the previous step.
u̇≈ du/ds and λ̇ ≈ dλ/ds,
(say by differences using s0 and s−1).

Watch out for scaling!

C. T. Kelley – p.12



What’s the problem?

• Multiple solutions, hysteresis

• No solutions

A fix: Pseudo-arclength continuation.
Set x = (u,λ ) and solve G(x,s) = 0, where, for example

G(x,s) =

(

F
N

)

=

(

F(u(s),λ (s))
u̇T (u−u0)+ λ̇ T (λ −λ0)− (s− s0)

)

.

s is an artificial “arclength” parameter.
u0 and λ0 are from the previous step.
u̇≈ du/ds and λ̇ ≈ dλ/ds,
(say by differences using s0 and s−1).

Watch out for scaling!

C. T. Kelley – p.12



What’s the problem?

• Multiple solutions, hysteresis

• No solutions

A fix: Pseudo-arclength continuation.
Set x = (u,λ ) and solve G(x,s) = 0, where, for example

G(x,s) =

(

F
N

)

=

(

F(u(s),λ (s))
u̇T (u−u0)+ λ̇ T (λ −λ0)− (s− s0)

)

.

s is an artificial “arclength” parameter.
u0 and λ0 are from the previous step.
u̇≈ du/ds and λ̇ ≈ dλ/ds,
(say by differences using s0 and s−1).

Watch out for scaling!
C. T. Kelley – p.12



Simple Folds

We follow solution paths {x(s)}.
Assume that F is smooth and

• Gx is nonsingular (not always true) So implicit function
theorem holds in s.

We are assuming that there is no true bifurcation and that
the singularity in λ is a simple fold.
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Arclength Continuation Algorithm

Set λ = a, s = 0 solve F(u,λ ) = 0 with
Newton-(MG, GMRES, . . . ) to obtain u0.
Estimate ds, u̇, λ̇ .
while s < smax do

s← s+ds.
Solve G(x,s) = 0 with u0 as the initial iterate.
x0← x
Update ds, u̇, λ̇ .

end while

C. T. Kelley – p.14



Simple example: Chandreskhar H-Equation

H(µ) =

(

1−
c
2

∫ 1

0

µH(ν)dν
µ +ν

)−1

• Compact fixed point problem.

• Problem becomes harder as H(1)→ ∞
• Two solutions for c 6= 0,1

• Two continuous solutions for 0 < c < 1.
• Complex conjugate pairs for c > 1.
• One continuous, one unbounded for c < 0.
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‖H‖1 vs c
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H and the path
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Wigner-Poisson Equation for f (t,x,k)

∂ f
∂ t

=−
hk

2πm∗
∂ f
∂x
−V ( f )+

∂ f
∂ t

∣

∣

∣

∣

coll
,

V ( f )(x,k) =
1
h

∫

dk′ f (x,k′)
∫

dy[U(x+ y)−U(x− y)]sin[2y(k− k′)].

U(z) = u(z)+∆c(z),
d2

dx2 u(x) =
q2

ε

[

Nd(x)−
∫ ∞

−∞

dk
2π

f (x,k)

]

.

∂ f
∂ t

∣

∣

∣

∣

coll
=

1
τ

[

f0(x,k)
∫

dk f0(x,k)

∫

dk f (x,k)− f (x,k)

]

.
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Path following for Wigner Poisson Eq

• Use LOCA (Salinger-Phipps)
NOX, AztecOO, Anasazi, Epetra

• Precondition with inverse of spatial differential operator

• Uniformly bounded, not quite compact

• Folds, hysteresis, Hopf bifurcation
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Latest LOCA results
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Time-stepper

Model Problem: Investigate steady-state solutions of the
Chafee-Infante equation

ut−νuxx +u3−u = 0, x ∈ [0,π],u(0, t) = u(π, t) = 0,

as functions of ν .

Method: Let K(T,u,ν) be the solution of the PDE at time T
with initial data u. Solve

F(u,ν) = u−K(T,u,ν).

If ν > 0, K is a smoother.
T becomes an algorithmic parameter.
More complex examples of this idea are in
Schroff-Keller(93), Gear-Kevrekidis(03) . . .

C. T. Kelley – p.21
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General Timesteppers

• u→ K(T,u,λ ) is “almost” finite rank.

• Finitely many important modes (inertial manifold)
• Size of T affects number of “slow modes”

• Map may come from
• Black-box codes
• Microscale simulations scales using non-DE

methods
• Large codes that are hard to modify and/or

understand
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u and the path
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Branch Switching

These were not simple folds.

• Simple bifurcations (the forks)→ sign change in
determinant.
How do you compute that determinant?

• Matrix-free detection→
• generalized eigenvalue problem→
• s∗ and w 6= 0 such that Gx(x(s∗))w = 0

• At the bifurcation point s∗: choice of directions.
ẋ or the new direction ±w.
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How should compactness help?

• Newton-Krylov solvers: Ferng-K(00),
K, Kevrekidis, Qiao (04)

• Mesh-independent performance for compact
ranges of s,

• Preconditioning easy or unnecessary(?).

• Multilevel solvers
• Easy to build. Compactness smooths for you.
• Appropriate coarse grid data depend on s.
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Timesteppers and Compactness

Let D have dimension d

Fu(u,ν) = I−K +E

where

• K = PDKPD, where PD is a projection onto D

• ‖E‖ is small, and

• we solve Fu(u,ν)s =−F(u,ν) with GMRES.

Dimension of D will depend on T .
T should be selected with thought.
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Convergence of GMRES

Let rm be the mth GMRES residual.
Set

p(z) = pM(z)/p(0).

where pM is the minimal polynomial of I−K.

Since

‖p(Fu)‖= O(‖E‖) so ‖p(Fu)
m‖= O(‖E‖m)

we can apply standard GMRES theory to show

‖rm(d+1)‖ ≤ ‖p(Fu)
mr0‖= O(‖E‖m),

for all m≥ 1.
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Inflated system

Same results for

G(x,s) =

(

F
N

)

=

(

F(u(s),λ (s))
u̇T (u−u0)+ λ̇ T (λ −λ0)− (s− s0)

)

.

with d replaced by d +2.
Meaning: cost of solve is independent of discretization,
unless d begins to increase with s.
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Multilevel Approach

Pathfollowing on coarse mesh + nested iteration fails.

• F(u,λ ) = u−K (u,λ )

• λ (s) is sensitive to the mesh.

• Track path on fine mesh.

• Use coarse mesh problem to approximate Ku
Apply GMRES to new problem.
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Coarse mesh problem construction

For continuation in λ
• xh = xh +dx, Euler predictor on fine mesh.

• uH = IH
h (uh), λ = λ H = λ h.

• Build KH = Ih
HK H

u (uH ,λ )IH
h

• Norm convergent (K, 1995) if IH
h is done right

degenerate kernel approximation

• Approximate Newton step by solving
s−KHs =−Fh(uH ,λ ).
Fine mesh residual and coarse mesh solve.
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Continuation in s

Approximate Gx by

GH,h
u,λ (u,λ )≡







I−∂KH(IH
h u,λ )/∂u −∂KH(IH

h u,λ )/∂λ

(IH
h u̇)T λ̇






.

and apply GMRES.

• Operator-function product is now on coarse mesh.

• Works for “black-box” functions. Flexible choice of K H .

• Theory follows from older work,
if you coarsen only in K , not in G.
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Conclusions

• Exploitation of compactness in path following
• Simple folds
• 6 coarse mesh Krylovs/Newton for H-equation
• Multilevel Chafee-Infante results in progress
• GMRES working for Wigner-Poisson Eq

• Branching and Hopf in the works
Wigner-Poisson results for Hopf almost there

• Scaling F vs N important as path grows

C. T. Kelley – p.32
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