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Moral of Talk

You can see a lot just by listening.
Y. Berra
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Nonlinear Equations and Newton's Method Integration to Steady State

Implementation

Objective: Integrate to Steady State

Given an initial value problem
ur = —F(u), u(0) = up

find u* = limy_yjns u(t).
Assume u* exists, then the obvious thing to do is

Solve F(u) =0
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Nonlinear Equations and Newton's Method Integration to Steady State

Implementation

Newton's method

Problem: solve F(u) =0
F : RN — RN is Lipschitz continuously differentiable.
Newton's method

Uy = uc +s.

Compute the step s by solving the linearized problem
F'(uc)s = —F(uc)
F'(uc) is the Jacobian matrix

Fl, = f;/0x;
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Nonli E i N 's Meth .
onlinear Equations and Newton’s Method TR (o Siestly Siate

Implementation

Implementation

Inexact formulation:
[F'(ue)s + F(ue)ll < nellF(ue)l|-

n = 0 for direct solvers + analytic Jacobians.
7 hides

> iterative linear solvers

» approximations of F’ like
finite differences, different physics, low-order schemes, ...
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Nonli E i N 's Meth .
onlinear Equations and Newton’s Method TR (o Siestly Siate

Implementation

Convergence for

If F(u*) =0, F'(u*) is nonsingular, and u. is close to u*
lus = u*|| = O(nel|ue — u*[| + [|uc — u*|1?)

For less smooth F ...
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Nonlinear Equations and Newton's Method TR (o Siestly Siate

Implementation

But what if ug is far from u*?

Armijo Rule: Find the least integer m > 0 such that
[F(uc +277s)|| < (1 —a2™™)|[F(uc)ll
» m =0 is Newton's method.

» Make it fancy by replacing 2.
» o = 10"*is standard.
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Nonli E i N 's Meth .
onlinear Equations and Newton’s Method TR (o Siestly Siate

Implementation

Theory

If Fis smooth and you get s with a direct solve or GMRES then
either

» BAD: the iteration is unbounded, i. e. limsup ||u,|| = oo,

» BAD: the derivatives tend to singularity, i. e.
limsup ||F"(u,) Y| = oo, or

» GOOD: the iteration converges to a solution u*
in the terminal phase, m = 0, and

unt1 — u™|| = O(allun — u™|| + |lun — U*”z)'

Bottom line: you get an answer or an easy-to-detect failure.
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Nonli E i N 's Meth .
onlinear Equations and Newton’s Method TR (o Siestly Siate

Implementation

Theory

If Fis smooth and you get s with a direct solve or GMRES then
either
» BAD: the iteration is unbounded, i. e. limsup ||u,|| = oo,

» BAD: the derivatives tend to singularity, i. e.
limsup ||F"(u,) Y| = oo, or

» GOOD: the iteration converges to a solution u*
in the terminal phase, m =0, and

unt1 — u™|| = O(allun — u™|| + |lun — U*”z)'

Bottom line: you get an answer or an easy-to-detect failure.
Newton’s method works great except when it doesn't.
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

What's wrong with Newton?

» Stagnation at singularity of F’ really happens.
» steady flow — shocks in CFD
» Non-physical results

» fires go out
> negative concentrations

» Nonsmooth nonlinearities

» are not uncommon: flux limiters, constitutive laws
» globalization is harder
» finite diff directional derivatives may be wrong

Wtc is one way to fix some of these things.
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

Steady-state Solutions

Enforce dynamics by solving

d
dit’ = —F(u), u(0) = uo,

to obtain u(t).
F(u) contains

> the nonlinearity,
» boundary conditions, and
> spatial derivatives.

Define the right answer as the steady-state solution:
u* = lime_ o0 u(t).
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

What can go wrong?

If ug is separated from u* by

» complex features like shocks,
» stiff transient behavior, or

» unstable equilibria,

then the Newton-Armijo iteration can
> stagnate at a singular Jacobian, or

» find a solution of F(u) = 0 that is not the one you want.
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

A Questionable Idea

One way to guarantee that you get u* is
» Find a high-quality temporal integration code.
> Set the error tolerances to very small values.

> Integrate the PDE to steady state.

» Continue in time until u(t) isn't changing much.
» Then apply Newton to make sure you have it right.

Good news: Even fixes problems for some non-smooth F.
Problem: you may not live to see the results.
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CFD Application
Nonlinear Reaction-Diffusion

Pseudo-Transient Continuation (Vtc )

Integrate
du

E =
to steady state in a stable way with increasing time steps.
Equation for Wtc Newton step:

—F(u)

(0 + F'(uc)) s = —F(uc),

or
(6t + F'(uc)) s + Fue)ll < nellF(uc)ll-
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

Wtc as an Integrator

» Low accuracy PECE integration

» Trivial predictor
» Backward Euler corrector + one Newton iteration
» 1st order Rosenbrock method

High order possible, Luo, K, Liao, Tam 06

> Begin with small “time step” §. Resolve transients.

» Grow the “time step” near u*. Turn into Newton.
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

Time Step Control: Venkatakrishnan, 89

Grow the time step with switched evolution relaxation (SER)

S = min(ol| F(uo)l|/[IF (un)ll, Smax)-

If Omax = 0o then 6, = dp—1||F(un—1)||/[|F(un)||-
Alternative with no theory (SER-B):

on = 5n—1/Hun - Un—l”
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

Temporal Truncation Error (TTE)

Estimate local truncation error by
2
2
and approximate (u)? by

2 (()i)n = ((W)i)na _ (W)i)n-1 = ((1)i)n—2
5n71 + 5,,,2 5n71 6n72

Adjust step so that 7 = .75.
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

PTC Convergence: SER

» If F is smooth enough (LIP),
> u* = lims oo u(t) exists,
» u* is dynamically stable, and

> g sufficiently small

then u, — u* and you get the local convergence rates for Newton
you deserve.
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

Proof? (Keyes, K, 98)

Three phase iteration:
» Small 6, inaccurate u; it's Euler's method (elementary)
» Small 4, good u; grow 6 and make u no worse (hard)

» Big 0, good u; it's Newton (no surprise)
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

CFD Application: Coffey, McRae, MacMullan, K, 03

Euler Equations: Unknowns density, velocity, energy.
V.(pv)=0
V-(pw+pl)=0

V- ((pe+p)v) =0

Ideal gas law p = p(y — 1)(e — |v|?/2), where v is the ratio of
specific heats.
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

But F is not smooth!

Typical Euler equation approach

» Discretize with 2nd order scheme with slope limiter.
Slope limiters can be nonsmooth, but Lipschitz continuous.

» Use Jacobian of a (smooth) 1st order scheme.

Modified method: u; = uc + s where
18+ Je) s+ Fu)ll < mellF(ue)ll,

and J. is the Jacobian of the smooth, low-order discretization.
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

Example: Flow through a nozzle
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Direction
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CFD Application

ransient Continuation (Wt ) Nonlinear Reaction-Diffusion

Stagnation with Newton-Armijo
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CFD Application
Nonlinear Reaction-Diffusion

ransient Continuation (Wtc )

Success with Vtc

PTC: Density 10 PTC: Pressure
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

Nonlinear Reaction-Diffusion: Fowler-K, 2005

—uz; + Amax(0,u)? =0

z€(0,1),u(0) =u(l) =0,

where p € (0,1).
Reformulate as a DAE to make the nonlinearity Lipschitz.

Let
_fuP ifu>0
YTl u ifu<o
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CFD Application

Pseudo-Transient Continuation (Vtc ) Nonlinear Reaction-Diffusion

Reformulation

Set x = (u,v)T and solve
o f(u,v) \ [ —uz+Amax(0,v) \
Flx) = ( g(u,v) > N ( u—w(v) =0,
The nonlinearity is

w(v) = vi/P if v >0
v if v<O0
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

DAE Dynamics

Semi-explicit index-one differential-algebraic equation (DAE)

o(2) (o) () -(7)

“ (s ) = o=
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CFD Application

Pseudo-Transient Continuation (Vtc ) Nonlinear Reaction-Diffusion

Why not ODE dynamics?

Original time-dependent problem is
us = uz; — Amax(0, u)P.
Applying Wtc to
vi =u—w(v)
rather than using u — w(v) = 0 as an algebraic constraint
» adds non-physical time dependence,

» changes the problem, and

» doesn't work.
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CFD Application

Pseudo-Transient Continuation (Wtc ) Nonlinear Reaction-Diffusion

Parameters

» p=_.1and A = 200. Leads to "dead core”.
> Jo = 1.0, Smax = 10°.
» Spatial mesh size 6, = 1/2048; discrete Laplacian Ls,

» Terminate nonlinear iteration when either
IF(xa) l/11F(x0)| < 107" or ||s,|| < 10719

Step is an accurate estimate of error (semismoothness).
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CFD Application
Nonlinear Reaction-Diffusion

Pseudo-Transient Continuation (Vtc )

Solution
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CFD Application

Pseudo-Transient Continuation (Vtc ) Nonlinear Reaction-Diffusion

Analytic OF

—Ls,u

= < u— v — max(0, V1/?) ) + < ! > max(0, v).

Since
0, if v<O
Omax(0,v) =< [0,1], ifv=0
1, if v >0,
we get ...
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CFD Application
Nonlinear Reaction-Diffusion

Pseudo-Transient Continuation (Vtc )

_ —Ls, 0
oF = < 1 —1—(1/p>max<o,v<1—P>/P)>

0 A
+<O 1>8max(0,v).
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CFD Application

Pseudo-Transient Continuation (Vtc ) Nonlinear Reaction-Diffusion

Convergence
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Inverse Singular Value Problem
Constrained Wtc (if | talk fast)

Constraints: Chu, Liao, Qi, Reese, Winton, K 08

% = —F(u),u(0) = up € Q.
u(t) € Q, F(u) € T(u) (tangent to Q).

Examples:

» Q has interior: bound constrained optimization

» Q smooth manifold: inverse eigen/singular value problems
Problem: Wtc will drift away from €.
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Inverse Singular Value Problem
Constrained Wtc (if | talk fast)

Projected Wtc

uy = P(ue — (071 + H(ue)) ™ F(ue))
where

» P is map-to-nearest RN — Q
|P'(u)]| =1 for u € Q.

» H(uc) makes Newton-like method fast.
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Inverse Singular Value Problem
Constrained Wtc (if | talk fast)

General Method for Constraints

F Lipschitz (no smoothness assumptions)

uy = Pluc — (671 + H(ue)) " F(ue)),

where H is an approximate Jacobian.
Theory: H bounded, other assumptions imply u, — u* and

Upt1 = ”rl1v+1 + 0(5;1 +nn)|lun — ™|

where
ulp1 = un — H(un) "' F(up)

which is as fast as the underlying method.

C. T. Kelley PTC



Inverse Singular Value Problem
Constrained Wtc (if | talk fast)

What are those other assumptions?

> u(t) — u*

> g is sufficiently small.

» ||P’(u)|| =1 or Lip const of P =1

» u* is dynamically stable

» H(u) is uniformly well-conditioned near {u(t)|t > 0}

» uy = uc — H(ue) " F(uc) is rapidly locally convergent near u*

C. T. Kelley PTC



Inverse Singular Value Problem
Constrained Wtc (if | talk fast)

Example: Linear Algebra Problem, Manifold Constraints

Chu, 92 ...
Find ¢ € RN so that the M x N matrix
N
B(C) = By + Z ck B
k=1
has prescribed singular values {0} ;.

Data: Frobenius orthogonal {B;}N o, {o/}N ;.
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Inverse Singular Value Problem
Constrained Wtc (if | talk fast)

Formulation

Least squares problem
min F(U, V) = |R(U, V)|}

where

N
R(U,V)=ULVT = By— > < ULVT B, >F By
k=1

Manifold constraints: U is orthogonal M x M and
V is orthogonal N x N
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Inverse Singular Value Problem
Constrained Wtc (if | talk fast)

Dynamic Formulation

Q={( 3 ) € RM*M @ RN>N| (J and V orthogonal }

Projected gradinet:

)WETUT —UZVTR(U,V)T)

1, (R u

(SES
< <

ODE:
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Inverse Singular Value Problem
Constrained Wtc (if | talk fast)

Projection onto {2

Higham 86, 04
Projection of square matrix onto orthogonal matrices

A— UP.

where A = UpHp is the polar decomposition.
Compute Up via the SVD A= UL VT

Up=UVT.
Projection of
A
w = ( B )
onto Q is
Up
P(w) = ( )
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Inverse Singular Value Problem
Constrained Wtc (if | talk fast)

The local method

Given u € Q let Pr(u) = P’(u) be the projection onto the tangent
space to 2 at u. Let

H = (1 = Pr(s)) + Pr(s)F'(u)Pr(u)

Locally (very locally) superlinearly convergent if Q is OK near u*.
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Inverse Singular Value Problem

Constrained Wtc (if | talk fast)

Inverse Singular Value Problem
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Conclusions

Conclusions

>

Wtc computes steady-state solutions.

» Can succeed when traditional methods fail.
» It is not a general nonlinear solver!

Works on some manifolds.

v

v

Theory and practice for many problems
» ODEs, DAEs
» Nonsmooth F
» Inverse eigen/singular value problems.

v

Explicit methods for gradient flows (Liao+K)
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Conclusions

It's over

It ain’t over 'till it's over.
Y. Berra
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