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Motivating Application: Pope, Olufsen, Ellwein, Novak
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I Compartmental Model of Cardio-Vascular System

I Integrate dynamics with ode15s

I Leads to nonlinear least squares problem min f where

f (p) = R(p)TR(p)/2; R : RN → RM

I Too many (16) fitting parameters
nonlinear dependencies
insensitive model output

I Problems with optimization
I Levenberg-Marquardt decreases function then stagnates,
I BUT difference gradients at “solution” are not small,
I so there’s no reason to believe the results.
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Iteration geography and Levenberg-Marquardt

I Current iterate: pc

I Updated iterate: p+

I Algorithms get you from pc to p+.

Levenberg-Marquardt Method: Trial step st .
From a current point pc ,

st = −(νI + R ′(pc)TR ′(pc))−1R ′(pc)TR(pc)

Your job: decide

I to reject st (change ν) or

I accept st , set p+ = pc + st , manage ν

ν = 0 is Gauss-Newton.
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Objectives

You would like

I ν → 0 (or at last ν 6→ ∞), so

I Levenberg-Marquardt converges to a minimizer
or at least a place where ∇f (p) = R ′(p)TR(p) = 0.

Instead,

I convergence is poor and

I neither the classical or recent theory helps.
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What can you do?

Obvious thing: “Regularize” the Jacobian
I Compute SVD of R ′; set “small” singular values to zero;

I Compute R ′ = UΣV T , U,V othonormal columns, Σ diagonal
I Set “small entries” in Σ to zero.

I Use the regularized Jacobian in place of R ′ in the
Levenberg-Marquardt Step

(νI + R ′(p)TR ′(p))s = −R ′(p)TR(p) = −∇f (p)
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So, does it work?

Does exactly what you want if you have

I small residual,

I clear gap in singular values, and

I highly accurate computation of R and R ′.

Otherwise, you can (and we did) get very poor results.
Very old problem for fixed ν:
Ben-Israel 66, Boggs 76, Boggs-Dennis 76, Tanabe 79

C. T. Kelley Rank-Deficient Problems



Motivating Application
Rank-Deficient Nonlinear Least Squares Problems

Conclusions

Theory
Subset Selection
Examples

Analysis in Ideal Case: nonlinear dependence

Assume we can factor R as

R(p) = R̃(B(p))

where B : RK → RN , K < N and R̃ : RN → RM .
This says “we have too many parameters”.
Technical Assumptions

I R̃ and B are Lipschitz continuously differentiable,

I B ′ and R̃ ′ have full column/row rank.

Note: You do not know B, only that it exists.
So, R ′ = UΣV T has exactly K nonzero singular values

C. T. Kelley Rank-Deficient Problems



Motivating Application
Rank-Deficient Nonlinear Least Squares Problems

Conclusions

Theory
Subset Selection
Examples

Optimality assumptions

Assume that

f̃ =
1

2
R̃T R̃

has a unique minimizer b∗ ∈ RK .
So f is minimized on the set

Z = {p | f (p) = f ∗} = {p |B(p) = b∗},

where f ∗ = (1/2)(R∗)TR∗ and R∗ = R̃(b∗).
Let

Zδ = {p | ‖p − p∗‖ ≤ δ, for some p∗ ∈ Z }.
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Classical Result, Boggs 76

Set ν = 0 (ie use Gauss-Newton). Make assumptions above and
assume that

d(p0) = minp∗∈Z‖p0 − p∗‖

is sufficiently small. Then d(pn)→ 0.
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Estimate for Levenberg-Marquardt step

st = (νI + R ′(p)TR ′(p))−1R ′(p)TR(p)

If pc ∈ Zδ for sufficiently small δ, then

st = −(νI + R ′(pc)TR ′(pc))†R ′(pc)TR ′(pc)ec + ∆S ,

where

‖∆S‖ ≤
γ‖ec‖2

2σK
+
γ‖ec‖‖R∗‖
ν + σ̄2

K

.

Here γ is the Lipschitz constant of R ′.
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Convergence Analysis

Let
d(p) = minp∗∈Z‖p − p∗‖

The estimate for the Levenberg-Marquardt step implies

d(p+) = O

([
ν

ν + σ2
K

+ ‖R(p∗)‖+ d(pc)

]
d(pc)

)
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Why is this good?

I Nonlinear equations: N = M = K is Newton.

I Full rank case K = N is Gauss-Newton.
I K < N leads to convergence in exact arithmetic:

I ν → 0 (so you’re getting close to Gauss-Newton).
I st approaches minimum norm solution of

R ′(pc)st = −R(pc)

as it should.
I Levenberg-Marquardt iterates converge to a point in Z

(but you can’t predict which one).
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Errors in R and R ′

I If you have small errors in R and R ′,

I ‖R∗‖ is small, and

I you know what K is (clear gap in computed σs),

then nothing goes wrong.
Replace the computed R ′ with J, where

R ′compute(p) = UΣV T , let ΣJ = diag(σ1, . . . , σK , 0, . . . , 0).

Set J = UΣJV
T , and use JTR for the gradient.
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Error Analysis

Let

J = R ′ + E , s̃ = −(ν + JT J)−1JTR, and η(ν) = max
σK≤σ≤σ1

σ

ν + σ2

Assume that

γ =
2‖E‖F

σk − 2‖E‖
< 1/2 and ‖E‖

(
2η(ν) +

‖E‖
ν + σ2

k

)
< 1.

Then

‖s − s̃‖ ≤ ‖R‖
(

2η(ν)(1 + γ + γ2) +
2‖E‖
ν + σ2

k

)
.
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What can go wrong?

I If the gap between σK and σK+1 is small,
I you may have trouble identifying K , and, even if you know K ,
I the span of the first K singular vectors may change

significantly with each nonlinear iteration,
I so the error E in J could be ≈ σK

I If ‖R∗‖ is too large then the convergence estimate is a
problem

I Small JTR may be a poor indicator of convergence.

So there’s a problem here. We got a good idea from Thomas
Heldt who’s been using . . .
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Subset Selection: Linear Least Squares

Find “optimal” linearly independent set of K columns for M × N
matirx A i. e.

I span of columns you keep includes ones you discard

I condition of M × K smaller matrix is good

So you transform a nearly rank deficient matrix into a full rank one.

I Golub/Klema/Stewart 1976

I Vèlez-Reyes 1992

I Chandrasekaran/Ipsen 1994

I Gu/Eisenstat 1996
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Subset Selection for us

I Assume prior knowledge of K
I Apply to computed R ′ at the start

I extract K design variables
I set other N − K to nominal values
I do full-rank computation

I Query span of K columns and conditioning at the end.

Conditioning is much less sensitive to perturbation.
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Example: Parameter ID for IVP

Dynamics:

y ′ = F (t, y : p), y(0) = y0, p ∈ RN .

Fit numerical solution of IVP to data vector d ∈ RM ,

f (p) =
1

2

M∑
i=1

(ỹ(ti : p)− di )
2

We compute ỹ with ode15s.
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Jacobian and sensitivities

Ri (p) = ỹ(ti : p)− di ,

and we compute the columns of the Jacobian by computing the
sensitivities,

wp = ∂y/∂p, so R ′ij(p) = wpj (ti ).

wp is the solution of the initial value problem

w ′p + Fy (y , p)wp + Fp(y , p) = 0, wp(0) = 0.

Solve for w and y simultaneously, so accuracy in R and R ′ is
roughly the same.
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Driven Harmonic Oscillator

(1+10−3δm)y ′′+(c1+c2)y ′+ky = A sin(ωt), y(0) = y0, y
′(0) = y ′0.

With p = (δm, c1, c2, k)T ∈ R4. Small singular value from p1 and
one zero singular value since

∂R

∂c1
=
∂R

∂c2
.

Data come from exact solution with

p∗ = (1.23, 1, 0, 1)T , and we use p0 = (0, 1, 1, .3)T .
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Highly Accurate Integration: SS improves performance

Accuracy tolerances to ode15s were

τa = τr = 10−8

and we got

p = (1.22, .5, .5, 1)T (no SS) and (1.23, 0, 1, 1)T (with SS)

which is very good.
The singular values were

(1.13e + 02, 2.16e + 00, 5.57e − 04, 1.68e − 15)

so there is a clear gap.
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Driven Oscillator: High Accuracy
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Driven Oscillator: High Accuracy: SS, faster convergence
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Large residual: Right vs Wrong

Perturb data component wise by 1 + 10−4rand . Resuts:

p = (.636, .5, .5, .998)T (no SS) and (1.27, 0, 1, 1)T (with SS)

So δm is completely wrong without SS.
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Driven Oscillator; Low Resolution

In this example we set

τa = τr = 10−4

and get

p = (.09, .5, .5, 1)T (no SS) and (.97, 0, 1, 1)T (with SS)

So we can recover one figure with poor accuracy and SS.
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What about the cardio model?
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I Cardiovascular modeling leads to

I too many parameters, which produces a
I nearly rank-deficient nonlinear least squares problem.

I Special structure from dependent design variables
I Great (and classic) results in exact arithmetic
I Less great results with errors
I Subset selection can help
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