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Does it work?

Motivating Application: Pope, Olufsen, Ellwein, Novak
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Motivating Application

Obvious approach
Does it work?

» Compartmental Model of Cardio-Vascular System
» Integrate dynamics with odelbs

» Leads to nonlinear least squares problem min f where
f(p) = R(p)" R(p)/2: R : R" — RM

» Too many (16) fitting parameters
nonlinear dependencies
insensitive model output

» Problems with optimization

» Levenberg-Marquardt decreases function then stagnates,
» BUT difference gradients at “solution” are not small,
> so there's no reason to believe the results.
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Does it work?

lteration geography and Levenberg-Marquardt

» Current iterate: p.
» Updated iterate: p
» Algorithms get you from p. to p,.

Levenberg-Marquardt Method: Trial step s;.
From a current point pe,

st = —(wl+ R'(pc) "R (pc)) 'R (pe) R(pe)

Your job: decide
> to reject s; (change v) or
> accept s, set py = pc + S, manage v

v = 0 is Gauss-Newton.
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Objectives

You would like

» v — 0 (or at last v /4 00), so

» Levenberg-Marquardt converges to a minimizer

or at least a place where Vf(p) = R'(p) " R(p) = 0.
Instead,

» convergence is poor and

» neither the classical or recent theory helps.
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What can you do?

Obvious thing: "Regularize” the Jacobian
» Compute SVD of R’; set “small” singular values to zero;

» Compute R' = UX VT, U, V othonormal columns, ¥ diagonal
» Set “small entries” in X to zero.

» Use the regularized Jacobian in place of R’ in the
Levenberg-Marquardt Step

(vI + R'(p)TR'(p))s = —R'(p)" R(p) = =V £(p)
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So, does it work?

Does exactly what you want if you have
» small residual,
» clear gap in singular values, and
» highly accurate computation of R and R'.

Otherwise, you can (and we did) get very poor results.
Very old problem for fixed v:
Ben-Israel 66, Boggs 76, Boggs-Dennis 76, Tanabe 79
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Analysis in |deal Case: nonlinear dependence

Assume we can factor R as

R(p) = R(B(p))

where B: RX — RN, K < N and R: RN — RM.
This says “we have too many parameters”.
Technical Assumptions

» R and B are Lipschitz continuously differentiable,
» B’ and R’ have full column/row rank.

Note: You do not know B, only that it exists.
So, R = ULV has exactly K nonzero singular values
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Optimality assumptions

Assume that 1
F-lrR

2

has a unique minimizer b* € RX.

So f is minimized on the set

Z=A{p|f(p) =1} ={p|B(p) = b},

where f* = (1/2)(R*)TR* and R* = R(b*).
Let
Zs={pllp—p*[| <9, for some p* € Z }.
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Classical Result, Boggs 76

Set v = 0 (ie use Gauss-Newton). Make assumptions above and
assume that

d(po) = minp-cz||po — p||
is sufficiently small. Then d(p,) — 0.
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Estimate for Levenberg-Marquardt step

st =l + R (p)"R'(p))'R'(p)"R(p)
If pc € Z5 for sufficiently small ¢, then

st = —(vl + R'(pc) "R'(pc)) R (pc) "R (pc)ec + As,

where

ecl® | lecllR

Ac|l <
H SH_ 20K V—l—&f(

Here v is the Lipschitz constant of R'.
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Convergence Analysis

Let
d(p) = miny-ez|lp — P’
The estimate for the Levenberg-Marquardt step implies

p:) =0 (| + IR + d(p0)] dlo))

2
v+ oy
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Why is this good?

» Nonlinear equations: N = M = K is Newton.

» Full rank case K = N is Gauss-Newton.
» K < N leads to convergence in exact arithmetic:

» v — 0 (so you're getting close to Gauss-Newton).
> s; approaches minimum norm solution of

R'(pc)s: = —R(pc)

as it should.
» Levenberg-Marquardt iterates converge to a point in Z
(but you can't predict which one).
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Errors in R and R’

» If you have small errors in R and R/,
> [|[R*|| is small, and

» you know what K is (clear gap in computed os),

then nothing goes wrong.
Replace the computed R’ with J, where
Réompute(p) = UZVT7 let zJ = diag(o-h - 0K, O, SERE) O)

Set J = UX VT, and use JTR for the gradient.
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Error Analysis

Let
g

o . T nN-14T =
J=R+ES=—(+J) TR and n(v) = max -——s

Assume that

_ 20l
o~ 2|[E]

E
<1/2 and ||E| (277(V)+ ” Hz) <l
I/—l—O‘k

Then

- 21|E
Is -5l < IRl <2n(V)(1 T2y 4 2IEL ”2> .
1/—|—Uk
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What can go wrong?

» If the gap between ok and o1 is small,

» you may have trouble identifying K, and, even if you know K,

> the span of the first K singular vectors may change
significantly with each nonlinear iteration,

» so the error E in J could be ~ ok

» If ||[R*|| is too large then the convergence estimate is a
problem

» Small JTR may be a poor indicator of convergence.

So there's a problem here. We got a good idea from Thomas
Heldt who's been using ...
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Subset Selection: Linear Least Squares

Find “optimal” linearly independent set of K columns for M x N
matirx A i. e.
» span of columns you keep includes ones you discard

» condition of M x K smaller matrix is good
So you transform a nearly rank deficient matrix into a full rank one.
» Golub/Klema/Stewart 1976
> Velez-Reyes 1992
» Chandrasekaran/Ipsen 1994
» Gu/Eisenstat 1996
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Subset Selection for us

» Assume prior knowledge of K
» Apply to computed R’ at the start

» extract K design variables
> set other N — K to nominal values
» do full-rank computation

» Query span of K columns and conditioning at the end.

Conditioning is much less sensitive to perturbation.
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Example: Parameter ID for IVP

Dynamics:

y' = F(t,y:p), y(0) = yo, p€ RN,

Fit numerical solution of IVP to data vector d € RM,

We compute y with odelbs.
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Jacobian and sensitivities

Ri(p) = y(ti : p) — di

and we compute the columns of the Jacobian by computing the
sensitivities,

wp = dy/0p, so Ri(p) = wy(ti).
wp is the solution of the initial value problem
W;/J + F}’(y7p)WP + FP()/ap) =0, WP(O) =0.

Solve for w and y simultaneously, so accuracy in R and R’ is
roughly the same.
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Driven Harmonic Oscillator

(14+10730,)y"+(c1+ )y’ +ky = Asin(wt), y(0) = yo,y’(0) = v4.

With p = (6, c1, c2, k)T € R*. Small singular value from p; and
one zero singular value since

oR _ OR
8c178cz'

Data come from exact solution with

p* =(1.23,1,0,1)7, and we use pp = (0,1,1,.3)".
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Highly Accurate Integration: SS improves performance

Accuracy tolerances to odel5s were
Ta = Tp = 1078
and we got
p=(1.22,.5,.51)"(no SS) and (1.23,0,1,1)7 (with SS)

which is very good.
The singular values were

(1.13e 4 02,2.16e + 00,5.57¢ — 04,1.68e — 15)

so there is a clear gap.
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Driven Oscillator: High Accuracy
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Driven Oscillator: High Accuracy: SS, faster convergence
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Large residual: Right vs Wrong

Perturb data component wise by 1 + 10~#rand. Resuts:
p = (.636,.5,.5,.998) " (no SS) and (1.27,0,1,1) " (with SS)

So dp, is completely wrong without SS.
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Driven Oscillator: Low Resolution

In this example we set
Ta=T1,=1074
and get
p=(.09,.5,.5,1)"(no SS) and (.97,0,1,1) " (with SS)

So we can recover one figure with poor accuracy and SS.
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What about the cardio model?
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Conclusions

» Cardiovascular modeling leads to
» too many parameters, which produces a

» nearly rank-deficient nonlinear least squares problem.

» Special structure from dependent design variables
Great (and classic) results in exact arithmetic
Less great results with errors

Subset selection can help

v vy
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