Newton's Method in Mixed Precision

C. T. Kelley NC State University tim_kelley@ncsu.edu Supported by NSF, ARO

PolyU, November 13 2020

Outline

1 Nonlinear Equations and Backward Error

- Newton's Method
- Inexact function and Jacobian

2 Linear Solver Woes

- This Talk's Problem
- The Backward Error Bites You
- Probabilistic Rounding Analysis
- 3 Example. You figure it out.
- 4 Codes

5 Summary

-Newton's Method

Nonlinear Equations

Objective: solve

$$F(x) = 0$$

where

$$\mathsf{F}=(f_1,f_2,\ldots,f_N)^T.$$

Newton's method is

$$\mathbf{x}_{+} = \mathbf{x}_{c} - \mathsf{F}'(\mathbf{x}_{c})^{-1}\mathsf{F}(\mathbf{x}_{c}).$$

Jacobian:

$$(\mathsf{F}')_{ij} = \partial f_i / \partial x_j$$

æ

イロン 不同 とくほど 不同 とう

-Newton's Method

Local Convergence to distinguished root \boldsymbol{x}^*

Standard assumptions for local convergence: There is $x^* \in D$ such that

• $F'(x^*)$ is nonsingular, and

• F'(x) is Lipschitz continuous with Lipschitz constant γ , i. e.

$$\|\mathsf{F}'(\mathsf{x}) - \mathsf{F}'(\mathsf{y})\| \le \gamma \|\mathsf{x} - \mathsf{y}\|,$$

for all $x, y \in D$.

-Newton's Method

Rules for talking about Newton's method

- x* is the solution in SA which may not be the one you want
- $e = x x^*$ is the error
- Convergence theorems in terms of change from
 - current iteration x_c to
 - next iteration x₊

イロト イヨト イヨト イヨト

-Newton's Method

Famous local convergence theorem

Assume that the standard assumptions hold, $x_c \in D$, and that

$$\|\mathbf{e}_{\mathsf{c}}\| \leq \frac{1}{2\|\mathsf{F}'(\mathsf{x}^*)^{-1}\|\gamma}.$$

Then

$$\|\mathsf{F}'(\mathsf{x}^*)^{-1}\|/2 \le \|\mathsf{F}'(\mathsf{x}_c)^{-1}\| \le 2\|\mathsf{F}'(\mathsf{x}^*)^{-1}\|.$$

Moreover, if e_+ is the Newton iterate from x_c then

$$\|\mathbf{e}_+\| \le \gamma \|\mathbf{F}'(\mathbf{x}^*)^{-1}\| \|\mathbf{e}_c\|^2 \le \|\mathbf{e}_c\|/2.$$

臣

イロン 不同 とくほど 不同 とう

-Newton's Method

For the entire iteration ...

Corollary: Assume that the standard assumptions hold, $x_0 \in D$, and that

$$\|\mathbf{e}_0\| \le \frac{1}{2\|\mathsf{F}'(\mathsf{x}^*)^{-1}\|\gamma}$$

Then the

- Newton iteration exists (i. e. $F'(x_n)$ is nonsingular for all n),
- converges to x*, and
- the convergence is q-quadratic

$$\|e_{n+1}\| = O(\|e_n\|^2)$$

臣

7 / 48

-Newton's Method

What does this mean?

In an ideal world where

- precision is infinite,
- derivatives are analytic,
- linear solvers are exact,

Newton's method works great with good initial data. But . . .

C. T. Kelley

臣

└─ Inexact function and Jacobian

... you'll be doing it wrong.

In practice, you get

$$\mathbf{x}_{+} = \mathbf{x}_{c} - \mathbf{J}_{c}^{-1}(\mathbf{F}(\mathbf{x}_{c}) + \mathbf{E}_{c})$$

where

臣

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

└─ Inexact function and Jacobian

A less famous theorem

Same assumptions as for Newton plus

$$\|J_c - F'(x_c)\| \le \frac{1}{4\|F'(x^*)^{-1}\|}$$

Then J_c is nonsingular and x_+ satisfies

$$\|e_+\| = O\bigg(\|e_c\|^2 + \|J_c - F'(x_c)\|\|e_c\| + \|E_c\|\bigg).$$

臣

イロト イヨト イヨト イヨト

└─ Inexact function and Jacobian

Local Improvement Theorem

Same assumptions as for Newton and, for all n,

$$\|J_n - F'(x_n)\| \le rac{1}{4\|F'(x^*)^{-1}\|}$$

and

$$\|\mathsf{E}_n\| \le \epsilon_F.$$

Then

$$\|e_{n+1}\| = O(\|e_n\|^2 + \|J_n - F'(x_n)\|\|e_n\| + \epsilon_F).$$

The theorem does not predict convergence, rather stagnation.

└─ Inexact function and Jacobian

•
$$\epsilon_F = 0$$
, $J_n = F(x_n)$: Newton

• $\epsilon_F > 0$, floating point error: Newton in practice

• $\epsilon_F > 0$, J_n finite difference Jacobian, step h

• Use optimal
$$h = \sqrt{\epsilon_F}$$
 and

•
$$\|\mathbf{e}_{n+1}\| = O(\|\mathbf{e}_n\|^2 + h\|\mathbf{e}_n\| + \epsilon_F)$$

Same behavior as Newton until stagnation.

•
$$\epsilon_F > 0$$
, $J_n = F'(x_0)$, chord method

臣

・ロト ・回ト ・ヨト ・ヨト

└─ Inexact function and Jacobian

Example: J_n forward difference approximation

With a difference increment of h

$$\|\mathsf{J}_n-\mathsf{F}'(\mathsf{x}_n)\|=O(h)$$

where the prefactor in the O term depends on

•
$$\gamma$$
: Lip constant of F'

臣

└─ Inexact function and Jacobian

Stagnation in action: Residual histories

$$f(x) = x - \tan(x); x_0 = 4.5$$

Indistinguishable!

Analytic	Finite Difference
1.37e-01	1.37e-01
4.13e-03	4.13e-03
3.98e-06	3.98e-06
3.69e-12	5.60e-12
8.88e-16	8.88e-16
8.88e-16	8.88e-16
8.88e-16	8.88e-16

14 / 48

æ

イロン イヨン イヨン イヨン

└─ Inexact function and Jacobian

Implementation: ignore ϵ_F

Initialize x_0 , n = 0, termination criteria while Not happy do Evaluate $F(x_n)$; terminate? Evaluate $J_n \approx F'(x_n)$ Solve $J_n s = -F(x_n)$ $x_{n+1} = x_n + s$ end while

2

└─ Inexact function and Jacobian

- Store J in reduced precision.
- Solve in reduced precision.
 - Cut $O(N^2)$ storage by factor of 2 (single)
 - Cut $O(N^3)$ work by factor of 2 (single)
- How can you lose? Why isn't this in all the books?

L This Talk's Problem

The case in this talk

- ϵ_F floating point double precision roundoff
- $J_c = J_N + \Delta_{be}$ where
- Δ_{be} is the backward error
- Solver is double, single, or half precision LU
 - J_N is the nominal approximation you give the linear solver $F'(x_c)$ in double or finite-difference approximation
 - The solver returns the solution of $(J_N + \Delta_{be})s = -F(x_c) E_c$

L This Talk's Problem

So the less famous theorem says ...

$$\|\mathbf{e}_{n+1}\| = O\left(\|\mathbf{e}_n\|^2 + (\|\mathbf{J}_{Nn} - \mathsf{F}'(\mathsf{x}_n)\| + \|\Delta_{be}\|)\|\mathbf{e}_n\| + \epsilon_F\right).$$

The Jacobian you think you have is harmless

- Analytic Jacobian: $\|J_{Nn} F'(x_n)\| = O(\epsilon_F)$
- Difference Jacobian: $\|J_{Nn} F'(x_n)\| = O(\epsilon_F^{1/2})$
- But what about the backward error?
- Large backward error → slow nonlinear convergence. Can we see this numerically?

What is that backward error?

Let's look at some famous linear algebra books

- J. W. DEMMEL, <u>Applied Numerical Linear Algebra</u>, SIAM, Philadelphia, 1997.
- NICHOLAS J. HIGHAM, <u>Accuracy and Stability of Numerical</u> <u>Algorithms</u>, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1996.

and read up on this.

└─ The Backward Error Bites You

What your professors told you is

If you're solving $\mathsf{A} \mathsf{x} = \mathsf{b}$ and the solver shows up with

$$(\mathsf{A} + \delta \mathsf{A})\mathsf{x} = \mathsf{b}$$

then (Demmel 97) page 49 says $\|\delta A\|_1 \leq 3g_{PP}N^3\epsilon_S \|A\|_1$, where

- *g*_{PP} is the growth factor and
- ϵ_S is the unit roundoff in the precision of the solver.

└─ The Backward Error Bites You

Growth factor? We don't need a growth factor!

- Worst case bound 2^{N-1} . Bad but completely artificial.
- (Higham 96, p 178-8) reports on a few cases where g_{PP} is a problem. But also quotes Wilkinson who said that problematic growth factors are "extremely uncommon".
- So in the spirit of optimism, we will ignore g_{PP} .

What does this mean?

Suppose
$$g_{PP} = 1$$
, you are still in trouble if N is large.
 $N^3 \epsilon_S = O(1)$ if
• (double): $\epsilon_S = 10^{-16}$, $N \approx 2 \times 10^5$
• (single): $\epsilon_S = 10^{-8}$, $N \approx 5 \times 10^2$
• (half): $\epsilon_S = 10^{-4}$, $N \approx 22$
FAKE NEWS!

These results are clearly silly. What's up?

æ.

・ロト ・回ト ・ヨト ・ヨト

Details

Page 175-177: Componentwise backward error (ignore permutation matrix)

$$|\delta \mathsf{A}| \le 2\gamma_{\mathsf{N}}|\hat{L}||\hat{U}|$$

where $\hat{L}\hat{U}=A+\delta A$ and

$$\gamma_N = \frac{N\epsilon_S}{1 - N\epsilon_S}$$

イロン イボン イモン イモン 三日

23/48

Did the N^3 go away?

Nope! The growth factor part is

$$|\hat{U}_{ij}| \leq \hat{g}_{PP} \max_{kl} |A_{kl}|$$

So

- $|\hat{L}_{ij}| \leq 1$ implies (worst case) $\|\hat{L}\|_1 \leq N$
- $\|\hat{U}\|_1 \leq \hat{g}_{PP} N \|A\|_1$ also worse case

臣

$$\|\Delta_{be}\|_1 \leq 2N^2 \gamma_N \hat{g}_{PP} \|\mathbf{A}\|_1.$$

• The N^3 is from

$$N^2 \gamma_N = \frac{N^3 \epsilon_S}{1 - N \epsilon_S}$$

But these estimates are the worst case. Are we doomed?

æ,

ヘロア 人間 アメヨア 人間 アー

Nope!

Why should |L| have an entire row or column of 1s? In many cases $|\hat{L}||\hat{U}| \leq C|A|$

- A symmetric
- Totally positive A (so $L_{ij} \ge 0$ and $U_{ij} \ge 0$)

So, in the perfect world where

•
$$|\hat{\mathsf{L}}||\hat{\mathsf{U}}| \leq C|\mathsf{A}|$$
 and

$$\bullet g_{PP} = O(1),$$

$$\|\mathsf{J}_N-\Delta_{be}\|_{\infty}=O(N\epsilon_S)?$$

Probably even better ...

・ 回 ト ・ ヨ ト ・ ヨ ト …

26 / 48

2

- N. J. HIGHAM AND T. MARY, <u>A new approach to</u> probabilistic rounding error analysis, Tech. Report 2018.33, Manchester Institute for Mathematical Sciences, School of Mathematics, The University of Manchester, 2018.
- I. C. F. IPSEN AND H. ZHOU, Probabilistic error analysis for inner products, 2019.

Big assumption: rounding errors are independent Some people do not believe this.

イロト イヨト イヨト

Probabilistic Rounding Analysis

Higham-Mary results: Lots of notation

Define

$$\tilde{\gamma}(\lambda) = \exp\left(\lambda\sqrt{N}\epsilon_{S} + \frac{N\epsilon_{S}^{2}}{1 - \epsilon_{S}}\right) - 1$$
$$P(\lambda) = 1 - 2\exp\left(-\frac{\lambda^{2}(1 - \epsilon_{S})^{2}}{2}\right)$$

and

$$Q(\lambda, N) = 1 - N(1 - P(\lambda))$$

2

ヘロア 人間 アメヨア 人間 アー

- $N\epsilon_S$ small $\rightarrow \tilde{\gamma}(\lambda) \approx \lambda \sqrt{N}\epsilon_S$
- ϵ_S small, λ large \rightarrow $P(\lambda) \approx 1$
- N large and λ large and curated → Q(λ, N³) ≈ 1 independently of N

2

イロト イヨト イヨト イヨト

Probabilistic Rounding Analysis

At last, a theorem!

Theorem:

Use Gaussian elimination for Ax=b. The the computed LU factors \hat{L} and \hat{U} satisfy

$$\mathsf{A} + \delta \mathsf{A} = \hat{\mathsf{L}}\hat{\mathsf{U}} \text{ and } |\delta \mathsf{A}| \leq (3\tilde{\gamma}(\lambda) + \tilde{\gamma}(\lambda)^2)|\hat{\mathsf{L}}||\hat{\mathsf{U}}|$$

with probability at least $Q(\lambda, N^3/3 + 3N^2/2 + 7N/6)$. Wait! What? Is this good?

臣

イロト イヨト イヨト イヨト

Probabilistic Rounding Analysis

Goodness of results

Remember, we get to pick λ to make things look good.

•
$$N\epsilon_S$$
 small so $(3\tilde{\gamma}(\lambda) + \tilde{\gamma}(\lambda)^2) = O(\epsilon_S \sqrt{N})$

• Much better than O(N)

Grow $\lambda \approx \sqrt{\log(N)}$ and $Q(\lambda, N^3/3 + 3N^2/2 + 7N/6) \approx 1$ So you can use \sqrt{N} with confidence(?)

2

What should we observe if \sqrt{N} is the right thing?

• Trouble (slow nonlinear convergence) when $\sqrt{N}\epsilon_S \ge .1$

- Double: $N \approx 10^{30}$. Not on my computer.
- Single: $N \approx 10^{14}$. Not on my computer.
- Half: $N \approx 10^6$. Maybe if we push it.
- Expectation: Single just as good as double.
- Expect to see deterioration with *N* for half.

-Example. You figure it out.

Chandrasekhar H-equation

Midpoint rule discretization

$$\mathcal{F}(H)(\mu) = H(\mu) - \left(1 - \frac{c}{2} \int_0^1 \frac{\mu H(\mu)}{\mu + \nu} \, d\nu\right)^{-1} = 0.$$

- Defined on C[0, 1]
- *F*['] nonsingular for 0 ≤ c < 1.
 Simple fold singularity at c = 1.
- Any sensible discretization inherits the singularity structure.

- Example. You figure it out.

Discrete Problem

$$\mathsf{F}(\mathsf{u})_i \equiv u_i - \left(1 - \frac{c}{2N} \sum_{j=1}^N \frac{u_j \mu_i}{\mu_j + \mu_i}\right)^{-1} = 0.$$

Midpoint rule says

$$\frac{c}{2N}\sum_{j=1}^{N}\frac{u_{j}\mu_{i}}{\mu_{j}+\mu_{i}}=\frac{c(i-1/2)}{2N}\sum_{j=1}^{N}\frac{u_{j}}{i+j-1}$$

so can evaluate F in $O(N \log(N))$ work with FFT.

æ,

- Example. You figure it out.

Analytic Jacobian

Define M by

$$M(u)_i = rac{c(i-1/2)}{2N} \sum_{j=1}^N rac{u_j}{i+j-1}$$

and compute the Jacobian analytically as

$$F'(u) = I - diag(G(u))^2 M$$

where

$$\mathsf{G}(\mathsf{u})_i = \left(1 - \frac{c}{2N} \sum_{j=1}^N \frac{u_j \mu_i}{\mu_j + \mu_i}\right)^{-1}$$

Takes $O(N^2)$ work.

æ

.

- c = .5, .99, 1.0 (no theory for c = 1.0)
- Analytic and forward difference Jacobians Theory predicts single as good as double
- Double, single, and half precision factor/solve
- Everything else in double

•
$$N = 2^p$$
, $p = 10, ..., 14$, $2^{14} = 16384$
Larger N took far too long in half.

Example. You figure it out.

c = .5, double and single

C. T. Kelley

Mixed Precision

37 / 48

(日)、日

c = .5, half, not quadratic looking

<ロ> <四> <四> <四> <三</td>

c = .99, double and single

C. T. Kelley

Mixed Precision

39 / 48

(三)

э

c = .99, half, Wait! What?

・ロト・西ト・ヨト・ヨー うへぐ

c = 1.0, double and single, theory not from this talk

What's up with c = 1?

It's like
$$f(x) = x^2 = 0$$
.

$$x^* = 0$$

•
$$f'(x) = 2x$$
 so $f'(x^*) = 0$. Singular!

- Newton: $x_+ = x_c x_c^2/(2x_c) = x_c/2$ if $x_c \neq 0$ Not quadratic!
- And why does the difference Jacobian go south?

$$f'(x) = 0$$
 implies $(f(x + h) - f(x))/h = O(h)$

so you're not entitled to much.

2

c = 1.0, half, DOOM! Some theory out there

Э

- Example. You figure it out.

What? Is that converging at all?

Back to $x^2 = 0$.

- Chord method: $x_{+} = x_{c} f'(x_{0})^{-1}f(x_{c})$
- $x_0 = 1$

•
$$x_+ = x_c - x_c^2/2 = x_c(1 - x_c/2)$$

Then (exercise for faculty)

$$\lim_{n\to\infty}\frac{x_n}{2/n}=1.$$

Sublinear convergence, sad!

白 と く ヨ と く ヨ と …

크

Reproduciblity

Codes in Julia (no joke!)

- Julia makes managing reproducitlity easy.
- You can use plain vanilla Jupyter notebooks.

Results in the paper

https://github.com/ctkelley/MPResults

- Solver + H-equation in Julia
- Story in Notebooks pdf works all the time; note book via html works sometimes

-Codes

New book under contract

Solving Nonlinear Equations with Iterative Methods: Solvers and Examples in Julia SIAM: Publication sometime in 2022

Three parts

Print book: sequel to FA1:

C. T. KELLEY, <u>Solving Nonlinear Equations with Newton's Method</u>, number 1 in Fundamentals of Algorithms, SIAM, Philadelphia, 2003.

- IJulia (aka Jupyter) notebook at https://github.com/ctkelley/NotebookSIAMFANL
- Julia package with solvers+test problems+examples https://github.com/ctkelley/SIAMFANLEquations.jl

- Under development and changing constantly
 - As the Julia people say "breaking changes" are possible
- Not formally registered yet
 - Once registered I'll have stable branch for the package/notebook
 - For now, the master branch is your best bet

臣

Low quality linear solvers are just fine

- Single precision → same nonlinear results
- $\blacksquare \text{ Half precision} \rightarrow \text{not great}$
- The precision for you is 32!
- *c* = 1.0 is different
- Software out there.
- Book in progress.

★ 문 ► ★ 문 ►