Newton's Method in Mixed Precision

C. T. Kelley
NC State University
tim_kelley@ncsu.edu
Supported by NSF, ARO

PolyU, November 132020

Outline

1 Nonlinear Equations and Backward Error
■ Newton's Method

- Inexact function and Jacobian

2 Linear Solver Woes
■ This Talk's Problem
■ The Backward Error Bites You

- Probabilistic Rounding Analysis

3 Example. You figure it out.
4 Codes
5 Summary

Nonlinear Equations

Objective: solve

$$
F(x)=0
$$

where

$$
\mathrm{F}=\left(f_{1}, f_{2}, \ldots, f_{N}\right)^{T}
$$

Newton's method is

$$
x_{+}=x_{c}-F^{\prime}\left(x_{c}\right)^{-1} F\left(x_{c}\right) .
$$

Jacobian:

$$
\left(F^{\prime}\right)_{i j}=\partial f_{i} / \partial x_{j}
$$

Local Convergence to distinguished root \times^{*}

Standard assumptions for local convergence:
There is $x^{*} \in D$ such that

- $F\left(x^{*}\right)=0$,
- $F^{\prime}\left(x^{*}\right)$ is nonsingular, and

■ $\mathbf{F}^{\prime}(x)$ is Lipschitz continuous with Lipschitz constant γ, $\underline{\text { i. e. }}$

$$
\left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq \gamma\|x-y\|,
$$

for all $\mathrm{x}, \mathrm{y} \in D$.

Rules for talking about Newton's method

- x^{*} is the solution in SA
which may not be the one you want
■ $\mathrm{e}=\mathrm{x}-\mathrm{x}^{*}$ is the error
- Convergence theorems in terms of change from
- current iteration x_{c} to
- next iteration X_{+}

Famous local convergence theorem

Assume that the standard assumptions hold, $\mathrm{x}_{c} \in D$, and that

$$
\left\|\mathrm{e}_{c}\right\| \leq \frac{1}{2\left\|\mathrm{~F}^{\prime}\left(x^{*}\right)^{-1}\right\| \gamma} .
$$

Then

$$
\left\|F^{\prime}\left(x^{*}\right)^{-1}\right\| / 2 \leq\left\|F^{\prime}\left(x_{c}\right)^{-1}\right\| \leq 2\left\|F^{\prime}\left(x^{*}\right)^{-1}\right\|
$$

Moreover, if e_{+}is the Newton iterate from x_{c} then

$$
\left\|e_{+}\right\| \leq \gamma\left\|F^{\prime}\left(x^{*}\right)^{-1}\right\|\left\|e_{c}\right\|^{2} \leq\left\|e_{c}\right\| / 2
$$

For the entire iteration . . .

Corollary: Assume that the standard assumptions hold, $x_{0} \in D$, and that

$$
\left\|\mathrm{e}_{0}\right\| \leq \frac{1}{2\left\|\mathrm{~F}^{\prime}\left(\mathrm{x}^{*}\right)^{-1}\right\| \gamma}
$$

Then the
■ Newton iteration exists (i. e. $\mathrm{F}^{\prime}\left(\mathrm{x}_{n}\right)$ is nonsingular for all n),

- converges to x^{*}, and
- the convergence is q-quadratic

$$
\left\|\mathrm{e}_{n+1}\right\|=O\left(\left\|\mathrm{e}_{n}\right\|^{2}\right)
$$

What does this mean?

In an ideal world where

- precision is infinite,
- derivatives are analytic,

■ linear solvers are exact,
Newton's method works great with good initial data. But ...

. . . you'll be doing it wrong.

In practice, you get

$$
\mathrm{x}_{+}=\mathrm{x}_{c}-\mathrm{J}_{c}^{-1}\left(\mathrm{~F}\left(\mathrm{x}_{c}\right)+\mathrm{E}_{c}\right)
$$

where

- $\mathrm{J}_{c} \approx \mathrm{~F}^{\prime}\left(\mathrm{x}_{c}\right)$ (maybe badly)
- E_{c} is the (usually small) error in F

A less famous theorem

Same assumptions as for Newton plus

$$
\left\|\mathrm{J}_{c}-\mathrm{F}^{\prime}\left(\mathrm{x}_{c}\right)\right\| \leq \frac{1}{4\left\|F^{\prime}\left(x^{*}\right)^{-1}\right\|}
$$

Then J_{c} is nonsingular and x_{+}satisfies

$$
\left\|e_{+}\right\|=O\left(\left\|\mathrm{e}_{c}\right\|^{2}+\left\|\mathrm{J}_{c}-\mathrm{F}^{\prime}\left(\mathrm{x}_{c}\right)\right\|\left\|e_{c}\right\|+\left\|\mathrm{E}_{c}\right\|\right)
$$

Local Improvement Theorem

Same assumptions as for Newton and, for all n,

$$
\left\|J_{n}-F^{\prime}\left(x_{n}\right)\right\| \leq \frac{1}{4\left\|F^{\prime}\left(x^{*}\right)^{-1}\right\|}
$$

and

$$
\left\|E_{n}\right\| \leq \epsilon_{F}
$$

Then

$$
\left\|\mathrm{e}_{n+1}\right\|=O\left(\left\|\mathrm{e}_{n}\right\|^{2}+\left\|\mathrm{J}_{n}-\mathrm{F}^{\prime}\left(\mathrm{x}_{n}\right)\right\|\left\|\mathrm{e}_{n}\right\|+\epsilon_{F}\right) .
$$

The theorem does not predict convergence, rather stagnation.

Examples

- $\epsilon_{F}=0, J_{n}=\mathrm{F}\left(\mathrm{x}_{n}\right)$: Newton
- $\epsilon_{F}>0$, floating point error: Newton in practice
- $\epsilon_{F}>0, J_{n}$ finite difference Jacobian, step h
- Use optimal $h=\sqrt{\epsilon_{F}}$ and

■ $\left\|\mathrm{e}_{n+1}\right\|=O\left(\left\|\mathrm{e}_{n}\right\|^{2}+h\left\|\mathrm{e}_{n}\right\|+\epsilon_{F}\right)$

- Same behavior as Newton until stagnation.

■ $\epsilon_{F}>0, J_{n}=F^{\prime}\left(x_{0}\right)$, chord method

Example: J_{n} forward difference approximation

With a difference increment of h

$$
\left\|\mathrm{J}_{n}-\mathrm{F}^{\prime}\left(\mathrm{x}_{n}\right)\right\|=O(h)
$$

where the prefactor in the O term depends on

- $\kappa\left(\mathrm{F}^{\prime}\right)$
- γ : Lip constant of F^{\prime}

Stagnation in action: Residual histories

$$
f(x)=x-\tan (x) ; x_{0}=4.5
$$

Indistinguishable!

Analytic	Finite Difference
$1.37 \mathrm{e}-01$	$1.37 \mathrm{e}-01$
$4.13 \mathrm{e}-03$	$4.13 \mathrm{e}-03$
$3.98 \mathrm{e}-06$	$3.98 \mathrm{e}-06$
$3.69 \mathrm{e}-12$	$5.60 \mathrm{e}-12$
$8.88 \mathrm{e}-16$	$8.88 \mathrm{e}-16$
$8.88 \mathrm{e}-16$	$8.88 \mathrm{e}-16$
$8.88 \mathrm{e}-16$	$8.88 \mathrm{e}-16$

Implementation: ignore ϵ_{F}

Initialize $\mathrm{x}_{0}, n=0$, termination criteria while Not happy do

Evaluate $F\left(x_{n}\right)$; terminate?
Evaluate $J_{n} \approx F^{\prime}\left(x_{n}\right)$
Solve $J_{n} s=-F\left(x_{n}\right)$
$x_{n+1}=x_{n}+s$
end while

Genius Idea!

- Store J in reduced precision.
- Solve in reduced precision.
- Cut $O\left(N^{2}\right)$ storage by factor of 2 (single)
- Cut $O\left(N^{3}\right)$ work by factor of 2 (single)
- How can you lose? Why isn't this in all the books?

The case in this talk

- ϵ_{F} floating point double precision roundoff
- $\mathrm{J}_{c}=\mathrm{J}_{N}+\Delta_{b e}$ where
- $\Delta_{b e}$ is the backward error
- Solver is double, single, or half precision LU
- J_{N} is the nominal approximation you give the linear solver $F^{\prime}\left(x_{c}\right)$ in double or finite-difference approximation
- The solver returns the solution of $\left(\mathrm{J}_{N}+\Delta_{b e}\right) \mathrm{s}=-\mathrm{F}\left(\mathrm{x}_{c}\right)-\mathrm{E}_{c}$

So the less famous theorem says . . .

$$
\left\|e_{n+1}\right\|=O\left(\left\|e_{n}\right\|^{2}+\left(\left\|J_{N_{n}}-F^{\prime}\left(x_{n}\right)\right\|+\left\|\Delta_{b e}\right\|\right)\left\|e_{n}\right\|+\epsilon_{F}\right) .
$$

The Jacobian you think you have is harmless

- Analytic Jacobian: $\left\|\mathrm{J}_{N_{n}}-\mathrm{F}^{\prime}\left(\mathrm{x}_{n}\right)\right\|=O\left(\epsilon_{F}\right)$
- Difference Jacobian: $\left\|\mathrm{J}_{N n}-\mathrm{F}^{\prime}\left(\mathrm{x}_{n}\right)\right\|=O\left(\epsilon_{F}^{1 / 2}\right)$
- But what about the backward error?
- Large backward error \rightarrow slow nonlinear convergence.

Can we see this numerically?

What is that backward error?

Let's look at some famous linear algebra books ...
■ J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

- Nicholas J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1996.
and read up on this.

What your professors told you is . . .

If you're solving $\mathrm{Ax}=\mathrm{b}$ and the solver shows up with

$$
(\mathrm{A}+\delta \mathrm{A}) \mathrm{x}=\mathrm{b}
$$

then (Demmel 97) page 49 says $\|\delta \mathrm{A}\|_{1} \leq 3 g_{P P} N^{3} \epsilon_{S}\|\mathrm{~A}\|_{1}$, where

- $g_{P P}$ is the growth factor and
- ϵ_{S} is the unit roundoff in the precision of the solver.

Growth factor? We don't need a growth factor!

- Worst case bound 2^{N-1}. Bad but completely artificial.
- (Higham 96, p 178-8) reports on a few cases where $g_{P P}$ is a problem. But also quotes Wilkinson who said that problematic growth factors are "extremely uncommon".
So in the spirit of optimism, we will ignore $g_{P P}$.

What does this mean?

Suppose $g_{P P}=1$, you are still in trouble if N is large. $N^{3} \epsilon_{S}=O(1)$ if

- (double): $\epsilon_{S}=10^{-16}, N \approx 2 \times 10^{5}$
- (single): $\epsilon_{S}=10^{-8}, N \approx 5 \times 10^{2}$
- (half): $\epsilon_{S}=10^{-4}, N \approx 22$

FAKE NEWS!
These results are clearly silly. What's up?

Details

Page 175-177: Componentwise backward error (ignore permutation matrix)

$$
|\delta \mathrm{A}| \leq 2 \gamma_{N}|\hat{L} \| \hat{U}|
$$

where $\hat{L} \hat{U}=\mathrm{A}+\delta \mathrm{A}$ and

$$
\gamma_{N}=\frac{N \epsilon_{S}}{1-N \epsilon_{S}}
$$

Did the N^{3} go away?

Nope!
The growth factor part is

$$
\left|\hat{U}_{i j}\right| \leq \hat{g}_{P P} \max _{k l}\left|A_{k l}\right|
$$

So

- $\left|\hat{L}_{i j}\right| \leq 1$ implies (worst case) $\|\hat{L}\|_{1} \leq N$
- $\|\hat{U}\|_{1} \leq \hat{g}_{P P} N\|\mathrm{~A}\|_{1}$ also worse case

More N^{3}

■ Bottom line:

$$
\left\|\Delta_{b e}\right\|_{1} \leq 2 N^{2} \gamma_{N} \hat{g}_{P P}\|\mathrm{~A}\|_{1}
$$

- The N^{3} is from

$$
N^{2} \gamma_{N}=\frac{N^{3} \epsilon_{S}}{1-N \epsilon_{S}}
$$

But these estimates are the worst case.
Are we doomed?

Nope!

Why should $|\mathrm{L}|$ have an entire row or column of 1 s ? In many cases $|\hat{\mathrm{L}}||\mathrm{U}| \leq C|A|$

- A symmetric
- Totally positive A (so $L_{i j} \geq 0$ and $U_{i j} \geq 0$)

So, in the perfect world where

- $|\hat{\mathrm{L}}||\hat{\mathrm{U}}| \leq C|A|$ and
- $g_{P P}=O(1)$,

$$
\left\|J_{N}-\Delta_{b e}\right\|_{\infty}=O\left(N \epsilon_{S}\right) ?
$$

Probably even better...

■ N. J. Higham and T. Mary, A new approach to probabilistic rounding error analysis, Tech. Report 2018.33, Manchester Institute for Mathematical Sciences, School of Mathematics, The University of Manchester, 2018.
■ I. C. F. Ipsen and H. Zhou, Probabilistic error analysis for inner products, 2019.
Big assumption: rounding errors are independent
Some people do not believe this.

Higham-Mary results: Lots of notation

Define

$$
\begin{gathered}
\tilde{\gamma}(\lambda)=\exp \left(\lambda \sqrt{N} \epsilon_{S}+\frac{N \epsilon_{S}^{2}}{1-\epsilon_{S}}\right)-1 \\
P(\lambda)=1-2 \exp \left(-\frac{\lambda^{2}\left(1-\epsilon_{S}\right)^{2}}{2}\right)
\end{gathered}
$$

and

$$
Q(\lambda, N)=1-N(1-P(\lambda))
$$

Limiting cases

- $N \epsilon_{S}$ small $\rightarrow \tilde{\gamma}(\lambda) \approx \lambda \sqrt{N} \epsilon_{S}$
- ϵ_{S} small, λ large $\rightarrow P(\lambda) \approx 1$
- N large and λ large and curated $\rightarrow Q\left(\lambda, N^{3}\right) \approx 1$ independently of N

At last, a theorem!

Theorem:
Use Gaussian elimination for $\mathrm{Ax}=\mathrm{b}$. The the computed $L U$ factors \hat{L} and U satisfy

$$
\mathrm{A}+\delta \mathrm{A}=\hat{\mathrm{L}} \hat{U} \text { and }|\delta \mathrm{A}| \leq\left(3 \tilde{\gamma}(\lambda)+\tilde{\gamma}(\lambda)^{2}\right)|\hat{\mathrm{L}}||\hat{\mathrm{U}}|
$$

with probability at least $Q\left(\lambda, N^{3} / 3+3 N^{2} / 2+7 N / 6\right)$. Wait! What? Is this good?

Goodness of results

Remember, we get to pick λ to make things look good.
■ $N \epsilon_{S}$ small so $\left(3 \tilde{\gamma}(\lambda)+\tilde{\gamma}(\lambda)^{2}\right)=O\left(\epsilon_{S} \sqrt{N}\right)$

- Much better than $O(N)$

■ Grow $\lambda \approx \sqrt{\log (N)}$ and $Q\left(\lambda, N^{3} / 3+3 N^{2} / 2+7 N / 6\right) \approx 1$
So you can use \sqrt{N} with confidence(?)

What should we observe if \sqrt{N} is the right thing?

- Trouble (slow nonlinear convergence) when $\sqrt{N} \epsilon_{S} \geq .1$
- Double: $N \approx 10^{30}$. Not on my computer.
- Single: $N \approx 10^{14}$. Not on my computer.
- Half: $N \approx 10^{6}$. Maybe if we push it.

■ Expectation: Single just as good as double.

- Expect to see deterioration with N for half.

Chandrasekhar H-equation

Midpoint rule discretization

$$
\mathcal{F}(H)(\mu)=H(\mu)-\left(1-\frac{c}{2} \int_{0}^{1} \frac{\mu H(\mu)}{\mu+\nu} d \nu\right)^{-1}=0
$$

- Defined on $C[0,1]$
- \mathcal{F}^{\prime} nonsingular for $0 \leq c<1$.

Simple fold singularity at $c=1$.
■ Any sensible discretization inherits the singularity structure.

Discrete Problem

$$
\mathrm{F}(\mathrm{u})_{i} \equiv u_{i}-\left(1-\frac{c}{2 N} \sum_{j=1}^{N} \frac{u_{j} \mu_{i}}{\mu_{j}+\mu_{i}}\right)^{-1}=0 .
$$

Midpoint rule says

$$
\frac{c}{2 N} \sum_{j=1}^{N} \frac{u_{j} \mu_{i}}{\mu_{j}+\mu_{i}}=\frac{c(i-1 / 2)}{2 N} \sum_{j=1}^{N} \frac{u_{j}}{i+j-1} .
$$

so can evaluate F in $O(N \log (N))$ work with FFT.

Analytic Jacobian

Define M by

$$
\mathrm{M}(\mathrm{u})_{i}=\frac{c(i-1 / 2)}{2 N} \sum_{j=1}^{N} \frac{u_{j}}{i+j-1}
$$

and compute the Jacobian analytically as

$$
\mathrm{F}^{\prime}(\mathrm{u})=\mathrm{I}-\operatorname{diag}(\mathrm{G}(\mathrm{u}))^{2} \mathrm{M}
$$

where

$$
\mathrm{G}(\mathrm{u})_{i}=\left(1-\frac{c}{2 N} \sum_{j=1}^{N} \frac{u_{j} \mu_{i}}{\mu_{j}+\mu_{i}}\right)^{-1}
$$

Takes $O\left(N^{2}\right)$ work.

Experiments

■ $c=.5, .99,1.0$ (no theory for $c=1.0$)

- Analytic and forward difference Jacobians Theory predicts single as good as double
■ Double, single, and half precision factor/solve
- Everything else in double

■ $N=2^{p}, p=10, \ldots, 14,2^{14}=16384$
Larger N took far too long in half.

$c=.5$, double and single

LExample. You figure it out.

$c=.5$, half, not quadratic looking

$c=.99$, double and single

LExample. You figure it out.

$c=.99$, half, Wait! What?

$c=1.0$, double and single, theory not from this talk

What's up with $c=1$?

It's like $f(x)=x^{2}=0$.

- $x^{*}=0$
- $f^{\prime}(x)=2 x$ so $f^{\prime}\left(x^{*}\right)=0$. Singular!

■ Newton: $x_{+}=x_{c}-x_{c}^{2} /\left(2 x_{c}\right)=x_{c} / 2$ if $x_{c} \neq 0$ Not quadratic!
■ And why does the difference Jacobian go south?

$$
f^{\prime}(x)=0 \text { implies }(f(x+h)-f(x)) / h=O(h)
$$

so you're not entitled to much.

$c=1.0$, half, DOOM! Some theory out there

What? Is that converging at all?

Back to $x^{2}=0$.

- Chord method: $x_{+}=x_{c}-f^{\prime}\left(x_{0}\right)^{-1} f\left(x_{c}\right)$
- $x_{0}=1$
- $x_{+}=x_{c}-x_{c}^{2} / 2=x_{c}\left(1-x_{c} / 2\right)$
- Then (exercise for faculty)

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{2 / n}=1
$$

■ Sublinear convergence, sad!

Reproduciblity

- Codes in Julia (no joke!)
- Julia makes managing reproducitlity easy.
- You can use plain vanilla Jupyter notebooks.
- Results in the paper https://github.com/ctkelley/MPResults
- Solver + H-equation in Julia
- Story in Notebooks
pdf works all the time; note book via html works sometimes

New book under contract

Solving Nonlinear Equations with Iterative Methods: Solvers and Examples in Julia

SIAM: Publication sometime in 2022
Three parts

- Print book: sequel to FA1:
C. T. Kelley, Solving Nonlinear Equations with Newton's Method, number 1 in Fundamentals of Algorithms, SIAM, Philadelphia, 2003.
■ IJulia (aka Jupyter) notebook at https://github.com/ctkelley/NotebookSIAMFANL
- Julia package with solvers+test problems+examples https://github.com/ctkelley/SIAMFANLEquations.jl

Warning!

■ Under development and changing constantly
■ As the Julia people say "breaking changes" are possible
■ Not formally registered yet

- Once registered I'll have stable branch for the package/notebook
■ For now, the master branch is your best bet

Summary

■ Low quality linear solvers are just fine

- Single precision \rightarrow same nonlinear results
- Half precision \rightarrow not great
- The precision for you is 32 !
- $c=1.0$ is different

■ Software out there.

- Book in progress.

