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Nonlinear Equations and Backward Error

Newton’s Method

Nonlinear Equations

Objective: solve
F(x) = 0

where
F = (f1, f2, . . . , fN)T .

Newton’s method is

x+ = xc − F′(xc)−1F(xc).

Jacobian:
(F′)ij = ∂fi/∂xj
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Nonlinear Equations and Backward Error

Newton’s Method

Local Convergence to distinguished root x∗

Standard assumptions for local convergence:
There is x∗ ∈ D such that

F(x∗) = 0,

F′(x∗) is nonsingular, and

F′(x) is Lipschitz continuous with Lipschitz constant γ, i. e.

‖F′(x)− F′(y)‖ ≤ γ‖x− y‖,

for all x, y ∈ D.
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Nonlinear Equations and Backward Error

Newton’s Method

Rules for talking about Newton’s method

x∗ is the solution in SA
which may not be the one you want

e = x− x∗ is the error

Convergence theorems in terms of change from

current iteration xc to
next iteration x+
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Nonlinear Equations and Backward Error

Newton’s Method

Famous local convergence theorem

Assume that the standard assumptions hold, xc ∈ D, and that

‖ec‖ ≤
1

2‖F′(x∗)−1‖γ
.

Then
‖F′(x∗)−1‖/2 ≤ ‖F′(xc)−1‖ ≤ 2‖F′(x∗)−1‖.

Moreover, if e+ is the Newton iterate from xc then

‖e+‖ ≤ γ‖F′(x∗)−1‖‖ec‖2 ≤ ‖ec‖/2.
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Nonlinear Equations and Backward Error

Newton’s Method

For the entire iteration . . .

Corollary: Assume that the standard assumptions hold, x0 ∈ D,
and that

‖e0‖ ≤
1

2‖F′(x∗)−1‖γ
.

Then the

Newton iteration exists (i. e. F′(xn) is nonsingular for all n),

converges to x∗, and

the convergence is q-quadratic

‖en+1‖ = O(‖en‖2)
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Nonlinear Equations and Backward Error

Newton’s Method

What does this mean?

In an ideal world where

precision is infinite,

derivatives are analytic,

linear solvers are exact,

Newton’s method works great with good initial data.
But . . .
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Nonlinear Equations and Backward Error

Inexact function and Jacobian

. . . you’ll be doing it wrong.

In practice, you get

x+ = xc − J−1c (F(xc) + Ec)

where

Jc ≈ F′(xc) (maybe badly)

Ec is the (usually small) error in F
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Nonlinear Equations and Backward Error

Inexact function and Jacobian

A less famous theorem

Same assumptions as for Newton plus

‖Jc − F′(xc)‖ ≤ 1

4‖F ′(x∗)−1‖
.

Then Jc is nonsingular and x+ satisfies

‖e+‖ = O

(
‖ec‖2 + ‖Jc − F′(xc)‖‖ec‖+ ‖Ec‖

)
.
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Nonlinear Equations and Backward Error

Inexact function and Jacobian

Local Improvement Theorem

Same assumptions as for Newton and, for all n,

‖Jn − F′(xn)‖ ≤ 1

4‖F ′(x∗)−1‖
.

and
‖En‖ ≤ εF .

Then
‖en+1‖ = O(‖en‖2 + ‖Jn − F′(xn)‖‖en‖+ εF ).

The theorem does not predict convergence, rather stagnation.

C. T. Kelley Mixed Precision 11 / 48



Mixed Precision 12 / 48

Nonlinear Equations and Backward Error

Inexact function and Jacobian

Examples

εF = 0, Jn = F(xn): Newton

εF > 0, floating point error: Newton in practice

εF > 0, Jn finite difference Jacobian, step h

Use optimal h =
√
εF and

‖en+1‖ = O(‖en‖2 + h‖en‖+ εF )
Same behavior as Newton until stagnation.

εF > 0, Jn = F′(x0), chord method
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Nonlinear Equations and Backward Error

Inexact function and Jacobian

Example: Jn forward difference approximation

With a difference increment of h

‖Jn − F′(xn)‖ = O(h)

where the prefactor in the O term depends on

κ(F′)

γ: Lip constant of F′
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Nonlinear Equations and Backward Error

Inexact function and Jacobian

Stagnation in action: Residual histories

f (x) = x − tan(x); x0 = 4.5

Indistinguishable!
Analytic Finite Difference

1.37e-01 1.37e-01
4.13e-03 4.13e-03
3.98e-06 3.98e-06
3.69e-12 5.60e-12
8.88e-16 8.88e-16
8.88e-16 8.88e-16
8.88e-16 8.88e-16
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Nonlinear Equations and Backward Error

Inexact function and Jacobian

Implementation: ignore εF

Initialize x0, n = 0, termination criteria
while Not happy do

Evaluate F(xn); terminate?
Evaluate Jn ≈ F′(xn)
Solve Jns = −F(xn)
xn+1 = xn + s

end while
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Nonlinear Equations and Backward Error

Inexact function and Jacobian

Genius Idea!

Store J in reduced precision.

Solve in reduced precision.

Cut O(N2) storage by factor of 2 (single)
Cut O(N3) work by factor of 2 (single)

How can you lose? Why isn’t this in all the books?
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Linear Solver Woes

This Talk’s Problem

The case in this talk

εF floating point double precision roundoff

Jc = JN + ∆be where

∆be is the backward error

Solver is double, single, or half precision LU

JN is the nominal approximation you give the linear solver
F′(xc) in double or finite-difference approximation
The solver returns the solution of (JN + ∆be)s = −F(xc)− Ec
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Linear Solver Woes

This Talk’s Problem

So the less famous theorem says . . .

‖en+1‖ = O

(
‖en‖2 + (‖JNn − F′(xn)‖+ ‖∆be‖)‖en‖+ εF

)
.

The Jacobian you think you have is harmless

Analytic Jacobian: ‖JNn − F′(xn)‖ = O(εF )

Difference Jacobian: ‖JNn − F′(xn)‖ = O(ε
1/2
F )

But what about the backward error?

Large backward error → slow nonlinear convergence.
Can we see this numerically?
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Linear Solver Woes

The Backward Error Bites You

What is that backward error?

Let’s look at some famous linear algebra books . . .

J. W. Demmel, Applied Numerical Linear Algebra, SIAM,
Philadelphia, 1997.

Nicholas J. Higham, Accuracy and Stability of Numerical
Algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1996.

and read up on this.
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Linear Solver Woes

The Backward Error Bites You

What your professors told you is . . .

If you’re solving Ax = b and the solver shows up with

(A + δA)x = b

then (Demmel 97) page 49 says ‖δA‖1 ≤ 3gPPN
3εS‖A‖1, where

gPP is the growth factor and

εS is the unit roundoff in the precision of the solver.
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Linear Solver Woes

The Backward Error Bites You

Growth factor? We don’t need a growth factor!

Worst case bound 2N−1. Bad but completely artificial.

(Higham 96, p 178-8) reports on a few cases where gPP is a
problem. But also quotes Wilkinson who said that
problematic growth factors are “extremely uncommon”.

So in the spirit of optimism, we will ignore gPP .
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Linear Solver Woes

The Backward Error Bites You

What does this mean?

Suppose gPP = 1, you are still in trouble if N is large.
N3εS = O(1) if

(double): εS = 10−16, N ≈ 2× 105

(single): εS = 10−8, N ≈ 5× 102

(half): εS = 10−4, N ≈ 22

FAKE NEWS!
These results are clearly silly. What’s up?
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Linear Solver Woes

The Backward Error Bites You

Details

Page 175-177: Componentwise backward error (ignore permutation
matrix)

|δA| ≤ 2γN |L̂||Û|

where L̂Û = A + δA and

γN =
NεS

1− NεS
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Linear Solver Woes

The Backward Error Bites You

Did the N3 go away?

Nope!
The growth factor part is

|Ûij | ≤ ĝPP max
kl
|Akl |

So

|L̂ij | ≤ 1 implies (worst case) ‖L̂‖1 ≤ N

‖Û‖1 ≤ ĝPPN‖A‖1 also worse case
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Linear Solver Woes

The Backward Error Bites You

More N3

Bottom line:
‖∆be‖1 ≤ 2N2γN ĝPP‖A‖1.

The N3 is from

N2γN =
N3εS

1− NεS

But these estimates are the worst case.
Are we doomed?
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Linear Solver Woes

The Backward Error Bites You

Nope!

Why should |L| have an entire row or column of 1s?
In many cases |L̂||Û| ≤ C |A|

A symmetric

Totally positive A (so Lij ≥ 0 and Uij ≥ 0)

So, in the perfect world where

|L̂||Û| ≤ C |A| and

gPP = O(1),

‖JN −∆be‖∞ = O(NεS)?

Probably even better . . .
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Linear Solver Woes

Probabilistic Rounding Analysis

N. J. Higham and T. Mary, A new approach to
probabilistic rounding error analysis, Tech. Report 2018.33,
Manchester Institute for Mathematical Sciences, School of
Mathematics, The University of Manchester, 2018.

I. C. F. Ipsen and H. Zhou, Probabilistic error analysis for
inner products, 2019.

Big assumption: rounding errors are independent
Some people do not believe this.
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Linear Solver Woes

Probabilistic Rounding Analysis

Higham-Mary results: Lots of notation

Define

γ̃(λ) = exp

(
λ
√
NεS +

Nε2S
1− εS

)
− 1

P(λ) = 1− 2 exp

(
−λ

2(1− εS)2

2

)
and

Q(λ,N) = 1− N(1− P(λ))
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Linear Solver Woes

Probabilistic Rounding Analysis

Limiting cases

NεS small → γ̃(λ) ≈ λ
√
NεS

εS small, λ large → P(λ) ≈ 1

N large and λ large and curated → Q(λ,N3) ≈ 1
independently of N
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Linear Solver Woes

Probabilistic Rounding Analysis

At last, a theorem!

Theorem:
Use Gaussian elimination for Ax = b. The the computed LU
factors L̂ and Û satisfy

A + δA = L̂Û and |δA| ≤ (3γ̃(λ) + γ̃(λ)2)|L̂||Û|

with probability at least Q(λ,N3/3 + 3N2/2 + 7N/6).
Wait! What? Is this good?
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Linear Solver Woes

Probabilistic Rounding Analysis

Goodness of results

Remember, we get to pick λ to make things look good.

NεS small so (3γ̃(λ) + γ̃(λ)2) = O(εS
√
N)

Much better than O(N)

Grow λ ≈
√

log(N) and Q(λ,N3/3 + 3N2/2 + 7N/6) ≈ 1

So you can use
√
N with confidence(?)
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Linear Solver Woes

Probabilistic Rounding Analysis

What should we observe if
√
N is the right thing?

Trouble (slow nonlinear convergence) when
√
NεS ≥ .1

Double: N ≈ 1030. Not on my computer.
Single: N ≈ 1014. Not on my computer.
Half: N ≈ 106. Maybe if we push it.

Expectation: Single just as good as double.

Expect to see deterioration with N for half.
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Example. You figure it out.

Chandrasekhar H-equation

Midpoint rule discretization

F(H)(µ) = H(µ)−
(

1− c

2

∫ 1

0

µH(µ)

µ+ ν
dν

)−1
= 0.

Defined on C [0, 1]

F ′ nonsingular for 0 ≤ c < 1.
Simple fold singularity at c = 1.

Any sensible discretization inherits the singularity structure.
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Example. You figure it out.

Discrete Problem

F(u)i ≡ ui −

1− c

2N

N∑
j=1

ujµi
µj + µi

−1 = 0.

Midpoint rule says

c

2N

N∑
j=1

ujµi
µj + µi

=
c(i − 1/2)

2N

N∑
j=1

uj
i + j − 1

.

so can evaluate F in O(N log(N)) work with FFT.
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Example. You figure it out.

Analytic Jacobian

Define M by

M(u)i =
c(i − 1/2)

2N

N∑
j=1

uj
i + j − 1

and compute the Jacobian analytically as

F′(u) = I− diag(G(u))2M

where

G(u)i =

1− c

2N

N∑
j=1

ujµi
µj + µi

−1 .
Takes O(N2) work.

C. T. Kelley Mixed Precision 35 / 48



Mixed Precision 36 / 48

Example. You figure it out.

Experiments

c = .5, .99, 1.0 (no theory for c = 1.0)

Analytic and forward difference Jacobians
Theory predicts single as good as double

Double, single, and half precision factor/solve

Everything else in double

N = 2p, p = 10, . . . , 14, 214 = 16384
Larger N took far too long in half.
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Example. You figure it out.

c = .5, double and single

0 2 4 6 8 10
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Double precision, analytic Jacobian
N=1024
N=2048
N=4096
N=8192
N=16384

0 2 4 6 8 10
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Double precision, finite difference Jacobian

0 2 4 6 8 10
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Single precision, analytic Jacobian

0 2 4 6 8 10
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Single precision, finite difference Jacobian
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Example. You figure it out.

c = .5, half, not quadratic looking

0 2 4 6 8 10
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Half precision, analytic Jacobian
N=1024
N=2048
N=4096
N=8192
N=16384

0 2 4 6 8 10
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Half precision, finite difference Jacobian
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Example. You figure it out.

c = .99, double and single

0 2 4 6 8 10
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Double precision, analytic Jacobian
N=1024
N=2048
N=4096
N=8192
N=16384

0 2 4 6 8 10
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Double precision, finite difference Jacobian

0 2 4 6 8 10
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Single precision, analytic Jacobian

0 2 4 6 8 10
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1
||F

||/
||F

0||

Single precision, finite difference Jacobian
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Example. You figure it out.

c = .99, half, Wait! What?

0 2 4 6 8 10
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Half precision, analytic Jacobian
N=1024
N=2048
N=4096
N=8192
N=16384

0 2 4 6 8 10
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Half precision, finite difference Jacobian
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Example. You figure it out.

c = 1.0, double and single, theory not from this talk

0 5 10 15 20 25 30
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Double precision, analytic Jacobian
N=1024
N=2048
N=4096
N=8192
N=16384

0 5 10 15 20 25 30
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Double precision, finite difference Jacobian

0 5 10 15 20 25 30
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Single precision, analytic Jacobian

0 5 10 15 20 25 30
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1
||F

||/
||F

0||
Single precision, finite difference Jacobian
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Example. You figure it out.

What’s up with c = 1?

It’s like f (x) = x2 = 0.

x∗ = 0

f ′(x) = 2x so f ′(x∗) = 0. Singular!

Newton: x+ = xc − x2c /(2xc) = xc/2 if xc 6= 0
Not quadratic!

And why does the difference Jacobian go south?

f ′(x) = 0 implies (f (x + h)− f (x))/h = O(h)

so you’re not entitled to much.
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Example. You figure it out.

c = 1.0, half, DOOM! Some theory out there

0 5 10 15 20 25 30
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Half precision, analytic Jacobian
N=1024
N=2048
N=4096
N=8192
N=16384

0 5 10 15 20 25 30
Nonlinear Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||F
||/

||F
0||

Half precision, finite difference Jacobian
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Example. You figure it out.

What? Is that converging at all?

Back to x2 = 0.

Chord method: x+ = xc − f ′(x0)−1f (xc)

x0 = 1

x+ = xc − x2c /2 = xc(1− xc/2)

Then (exercise for faculty)

lim
n→∞

xn
2/n

= 1.

Sublinear convergence, sad!
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Codes

Reproduciblity

Codes in Julia (no joke!)

Julia makes managing reproducitlity easy.
You can use plain vanilla Jupyter notebooks.

Results in the paper
https://github.com/ctkelley/MPResults

Solver + H-equation in Julia
Story in Notebooks
pdf works all the time; note book via html works sometimes

C. T. Kelley Mixed Precision 45 / 48
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Codes

New book under contract

Solving Nonlinear Equations with Iterative Methods:
Solvers and Examples in Julia

SIAM: Publication sometime in 2022

Three parts

Print book: sequel to FA1:
C. T. Kelley, Solving Nonlinear Equations with Newton’s Method,

number 1 in Fundamentals of Algorithms, SIAM, Philadelphia, 2003.

IJulia (aka Jupyter) notebook at
https://github.com/ctkelley/NotebookSIAMFANL

Julia package with solvers+test problems+examples
https://github.com/ctkelley/SIAMFANLEquations.jl
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Codes

Warning!

Under development and changing constantly

As the Julia people say “breaking changes” are possible

Not formally registered yet

Once registered I’ll have stable branch for the
package/notebook
For now, the master branch is your best bet
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Summary

Summary

Low quality linear solvers are just fine

Single precision → same nonlinear results
Half precision → not great
The precision for you is 32!
c = 1.0 is different

Software out there.

Book in progress.
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