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Outline

• The Ornstein-Zernike (OZ) Equations

• Fast solvers for compact fixed point problems
Application to OZ + uniqueness problems

• Path following: introduction
Nonlinear solvers
Pseudo-arclength continuation

• Multilevel method.

• Results
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OZ Equations: O-Z, 1914

Used to calculate probability distributions of atoms in fluid
states. Unknowns are h,c ∈C[0,L].

• h: radial pair correlation function, observable

• c: direct correlation function, defined by IE

Integral Equation:

h(r)− c(r)−ρ(h∗ c)(r)

where

(h∗ c)(r) =

∫

R3
c(‖r− r′‖)h(‖r′‖)dr′.
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Algebraic Closure Constraint

exp(−βU(r)+h(r)− c(r))−h(r)−1 = 0.

where u is the Lennard-Jones potential.

U(r) = 4ε
(

(σ
r

)12
−
(σ

r

)6
)

.
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Parameters

Data are parameters

• ρ: number density, sometimes unknown

• β = 1/(absolute temperature×Boltzmann’s constant)

• ε : well depth of the potential

• σ : determines size of the particles
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Discretization

• Uniform grid on [0,L]

• Trapezoid rule for integration

• Discrete Hankel transform for evaluation of integrals

H (h)(k) = 4π
∫ ∞

0

sin(kr)
kr

h(r)r2dr

and
h∗ c = H

−1(ĥĉ).

• Fast evaluation via FFT
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Solution: ρ = .2,σ = 2;ε = .1;β = 10;L = 9
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Reduction to single equation

Let g = h− c, then the closure constraint expresses c as a
function of g.

c(r) = c(g(r)) = exp(−βU(r)+g(r))−g(r)−1.

The integral equation is

h−ρc∗h = c.

Take Hankel transforms

ĥ−ρ ĥĉ = ĉ,

and obtain ĥ = ĉ/(1−ρ ĉ).
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g→ c→ h leads to . . .

h = h(c(g)) = c(g)+K (g).

Subtract c and obtain a fixed point problem for g.

g = h(c(g))− c(g) = K (g).

K is a nonlinear integral operator with compact Fréchet
derivative.
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Alternative: reduce to single equation in c

• c→ h(c) via solution of integral equation

• h(c)− c = G (c), G compact

• K (c) = exp(−βU −G (c))−G (c)−1

Compact fixed point problem:

c = K (c)
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More General OZ Equations

Unknowns h,c,ρ,∈C[0,L]

h(r) = exp(−βU(r)+h(r)− c(r))−1

h(r) = c(r)+
∫ r

0
c(r− r′)ρ(r′)h(r′)dr′

ρ(r) = A1exp

(

−βU(r)+

∫ r

0
ρ(r− r′)c(r′)dr′

)

.

Also matrix-valued unknowns.
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Compact Fixed Point Problems

We’re worried about problems like

F(u) = u−K (u) = 0, on a Banach space X ,

where

• K ∈C1
LIP(X).

• K ′ ∈Com(X).

• Compactness will lead to fast solvers.
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How to exploit compactness

• Discretization
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How to exploit compactness

• Discretization
• Almost every reasonable scheme works, but
• some approximations to K ′ converge in norm.

• Solvers
• Krylov solvers need no preconditioning (in theory).
• Multilevel methods are easy to design.
• No smoothers are needed.

• Fast evaluation (O(N log(N)) is common.

• Newton-Krylov, Newton-MG nonlinear solvers work
with no surprises (most of the time).
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World’s Easiest Example

Linear Fredholm equation:

(I−K)u(x) = u(x)−
∫ 1

0
k(x,y)u(y)dy = f (x),

f ∈ X = C[0,1], k ∈C([0,1]× [0,1])
Approximating space: Vh = span {φi}

Ph is a projection onto Vh, and we seek uh ∈Vh.

uh(x)−Khuh(x) = uh(x)−
∫ 1

0
kh(x,y)u

h(y)dy = Ph f (x)

where, kh(x,y) = ∑Nh
i, j=1k(xi,x j)φi(x)φ j(y)
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Properties of Discretization

• Kh operates on the function space
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Properties of Discretization

• Kh operates on the function space

• Kh→ K in the operator norm

• Lots of flexibility in Ph
Strong convergence to I is all you need.

• If I−K is nonsingular, then

uh = (I−Kh)
−1Ph f → (I−K)−1 f

Solve finite dimensional system for nodal values.

• Other choices of Kh are possible
Standard quadrature rule + fine-to-coarse by averaging
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Nystrom interpolation

• Solve ũh−Khũh = f rather than uh−Khuh = Ph f .

• Multiply by Ph and use Kh = KhPh = PhKh to get

(Phũ)−PhKh(Phũ) = Ph f .

Finite dimensional system.
Solve for uh = Phũh.

• ũh = f +Khuh

C. T. Kelley – p.16



Performance of GMRES

Avoid the O(N3
h ) cost of a direct solver, and compute

uh = (I−Kh)
−1Ph f =

Nh

∑
i=1

uh
i φi ∈Vh.

with GMRES.

• Continuous problem: superlinear convergence

• Discrete problem: mesh independent performance

• Cost: One Khv evaluation/linear iteration
Think Nh logNh work if done slickly.

Nested iteration (aka grid sequencing) is a good idea.
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Multilevel Method; K 95

Since Kh→ K in the operator norm,

• (I−KH) (h << H) might be a good preconditioner for
GMRES
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Multilevel Method; K 95

Since Kh→ K in the operator norm,

• (I−KH) (h << H) might be a good preconditioner for
GMRES

• Richardson iteration is a better idea thanks to LOW
STORAGE.

u← u− (I−KH)−1((I−Kh)u−Ph f )

• H suff small implies
• Krylovs independent of H.
• One iteration/level suffices.

C. T. Kelley – p.18



Nonlinear Problems

Generalization to the nonlinear case is easy,

u← u− (I−K
′

H(uH))−1Fh(u)

if you’re careful about the fine-to-coarse transfer.
If coarse mesh suff fine,

• Krylovs/Newton independent of H

• one Newton/level suffices.
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Nested Iteration: Bottom up; K 95

h = H, i = 0
Solve FH(uH) = 0 to high accuracy.
u← uH

for i = 1, . . .m do
h← h/2
u← u− (I−K ′

H(uH))−1Fh(u)
end for

• All the linear solver work is on the coarse mesh.

• Only two grids H and h active at any time.

• Cost of solve to truncation error:
< 3 fine mesh evals, depending on cost of Kh
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Works great for OZ! K., Pettit 2004

Iteration statistics for three nested iterations

• Multilevel, Newton-GMRES, Picard

• Formulation in c:
c→ h(c) via integral equation
c = K (c) via constraint

• Tabulate:
i f
G = fine mesh GMRES/Newton (average)

icG = coarse GMRES/Newton (average)
incoming nonlinear residual Rh (R2h ≈ 4Rh)
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Iteration Statistics: h = 1/(N-1)

Picard Newton-GMRES Multilevel

N Rδ i f
G Rδ i f

G Rδ icG

65 3.5900e+00 650 3.5900e+00 85 3.5900e+00 85

129 1.3696e-01 11 1.3696e-01 4 1.3696e-01 8

257 2.0031e-02 3 2.9413e-02 5 4.1900e-02 7

513 4.8144e-03 9 6.9937e-03 5 9.4120e-03 7

1025 2.3568e-03 14 1.5400e-03 5 2.0205e-03 7

2049 3.6543e-04 15 3.5596e-04 7 4.6015e-04 8

4097 8.2396e-05 22 8.4570e-05 5 1.0831e-04 8

8193 2.2253e-05 38 2.0784e-05 7 2.6411e-05 8

16385 4.0075e-06 48 5.2729e-06 8 6.5042e-06 8

32769 9.7738e-07 32 1.2263e-06 5 1.6132e-06 8

65537 2.3869e-07 44 3.0647e-07 7 4.0169e-07 8
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Mission Accomplished?

• We found two solutions;
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Mission Accomplished?

• We found two solutions; one was wrong.

• Monte knew which one was correct. Tim did not.

• One can get one or the other by
• varying the initial iterate,
• varying the initial grid, or
• varying the details of the algorithm,

• which motivates a parametric (σ ,ε ,ρ . . .)
study of the OZ equations.

C. T. Kelley – p.23



Path Following

F : X× [a,b], F smooth, X a Banach space.
Objective: Solve F(u,λ ) = 0 for λ ∈ [a,b]
Obvious approach:

Set λ = a, solve F(u,λ ) = 0 with
Newton-(MG, GMRES, . . . ) to obtain u0 = u(λ ).
while λ < b do

Set λ = λ + dλ .
Solve F(u,λ ) = 0 with u0 as the initial iterate.
u0← u(λ )

end while
The implicit function theorem says: You will not find two
solutions with identical parameter values this way.
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What’s the problem?

• Multiple solutions, hysteresis

• No solutions
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What’s the problem?

• Multiple solutions, hysteresis

• No solutions

A fix: Pseudo-arclength continuation.
Set x = (u,λ ) and solve G(x,s) = 0, where, for example

G(x,s) =

(

F
N

)

=

(

F(u(s),λ (s))
u̇T (u−u0)+ λ̇ T (λ −λ0)− (s− s0)

)

.
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What’s the problem?

• Multiple solutions, hysteresis

• No solutions

A fix: Pseudo-arclength continuation.
Set x = (u,λ ) and solve G(x,s) = 0, where, for example

G(x,s) =

(

F
N

)

=

(

F(u(s),λ (s))
u̇T (u−u0)+ λ̇ T (λ −λ0)− (s− s0)

)

.

s is an artificial “arclength” parameter.
u0 and λ0 are from the previous step.
u̇≈ du/ds and λ̇ ≈ dλ/ds,

(say by differences using s0 and s−1).
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Simple Folds

We follow solution paths {x(s)}.
Assume that F is smooth and

• Gx is nonsingular (not always true)
So implicit function theorem holds in s.

We are assuming that there is no true bifurcation and that
the singularity in λ is at worst simple fold.

dim(Null(Fu)) = 1,Fλ 6= Ran(Fu)
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Arclength Continuation Algorithm

Set λ = a, s = 0 solve F(u,λ ) = 0 with
Newton-(MG, GMRES, . . . ) to obtain u0.
Estimate ds, u̇, λ̇ .
while s < smax do

s← s+ds.
Solve G(x,s) = 0 with u0 as the initial iterate.
x0← x
Update ds, u̇, λ̇ .

end while
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How should compactness help?

• Newton-Krylov solvers: Ferng-K(00),
K, Kevrekidis, Qiao (04)
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How should compactness help?

• Newton-Krylov solvers: Ferng-K(00),
K, Kevrekidis, Qiao (04)
• Mesh-independent performance for compact

ranges of s,
• Preconditioning easy or unnecessary(?).

• Multilevel solvers
• Easy to build. Compactness smooths for you.
• Appropriate coarse grid data depend on s.

C. T. Kelley – p.28



Multilevel Approach

Pathfollowing on coarse mesh + nested iteration fails.

• F(u,λ ) = u−K (u,λ )

• λ (s) is sensitive to the mesh.

• Track path on fine mesh.

• Use coarse mesh problem to approximate K u

Apply GMRES to new problem.
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Coarse mesh problem construction

For continuation in λ
• xh = xh +dx, Euler predictor on fine mesh.

• uH = IH
h (uh), λ = λ H = λ h.

• Build KH = Ih
HK H

u (uH ,λ )IH
h

• Norm convergent (K, 1995) if IH
h is done right

degenerate kernel approximation

• Approximate Newton step by solving
s−KHs =−Fh(uH ,λ ).
Fine mesh residual and coarse mesh solve.
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Continuation in s

Approximate Gx by

GH,h
u,λ (u,λ )≡







I−∂K H(IH
h u,λ )/∂u −∂K H(IH

h u,λ )/∂λ

(IH
h u̇)T λ̇






.

and apply GMRES.
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Continuation in s

Approximate Gx by

GH,h
u,λ (u,λ )≡







I−∂K H(IH
h u,λ )/∂u −∂K H(IH

h u,λ )/∂λ

(IH
h u̇)T λ̇






.

and apply GMRES.

• Operator-function product is now on coarse mesh.

• Works for “black-box” functions. Flexible choice of K H .

• Theory follows from older work,
if you coarsen only in K , not in G.
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Details

• F and N may require scaling to make Newton
terminate properly
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Details

• F and N may require scaling to make Newton
terminate properly

• ds must be controlled by watching for
• deviation of Newton’s/(step in s) from target
• curvature estimation
• true bifurcation

• occasional testing for bifurcation

C. T. Kelley – p.32



Numerical Results: Three Solution Paths

For each solution we continue in ρ, and plot three scalars:

• Excess number
∫

r2h(r)dr

• Pressure
∫

r3U ′(r)(h(r)+1)dr

• Compressibility
∫

r2c(r)dr

as functions of ρ.
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Path through physical solution
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Path through non-physical solution
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Path through new solution

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
−2500

−2000

−1500

−1000

−500

0

500

1000

ρ

compessibility

excess number

pressure

C. T. Kelley – p.36



Conclusions

• OZ integro-algebraic equations
Elimination leads to compact fixed point problem

• Multilevel method for integral equations

• Solves OZ, but finds too many solutions

• Bottom-up nesting goes the wrong way for continuation

• Top down works; currently 30% faster than GMRES
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