Anderson Acceleration: Software, Storage, and a Multi-Physics Example

C. T. Kelley NC State University tim_kelley@ncsu.edu Supported by NSF, DOE, ARO

ICERM, July 26, 2023

- 2 Storage Issues in Anderson Acceleration
- 3 Conductive-Radiative Heat Transport

4 Summary

-New Book

New Book: Great holiday gift

Fundamentals of Algorithms

Solving Nonlinear Equations with Iterative Methods Solvers and Examples in Julia

C. T. Kelley And

э

Sequel to

C. T. KELLEY, Solving Nonlinear Equations with Newton's Method, number 1 in Fundamentals of Algorithms, SIAM, Philadelphia, 2003.

Differences

- Completely new code in Julia
- Deletion: Broyden's method
- Additions: ΨTC + Anderson Acceleration
- Software + Jupyter notebook open source on Github

- Better mixed precision, especially half, support
 C. T. KELLEY, <u>Newton's method in mixed precision</u>, SIAM
 Review, 64 (2022), pp. 191–211.
- Jupyter notebooks
- Package infrastructure for software
- No licensing pain Good for retired people

Three part project

Print book

- IJulia (aka Jupyter) notebook interactive version of print book https://github.com/ctkelley/NotebookSIAMFANL
- Julia package with solvers+test problems+examples https://github.com/ctkelley/SIAMFANLEquations.jl

Print book is for sale. Notebook and Package are free.

-New Book

How to do projects like this

- Motivated by R. LeVeque's project:
 - Print book
 - Notebooks
 - \blacksquare notebook \rightarrow print book with Python
- Mappings are different
 - $\blacksquare notebook \rightarrow print book$
 - print book \rightarrow notebook
- Many things to figure out on your own.
- Randy and Tim were both retired while doing this.

-New Book

Coverage of Anderson Acceleration

- Nothing fancy (fixed β , no EDIIS, no depth management, ...)
- Theory (Basic stuff, no proofs)
- Discussion of Implementation
- CODE
- Examples

The rest of this talk is about the implementation and one example.

æ

What does AA store?

The simple version of AA fori x = G(x) is $anderson(x_0, G, m)$

$$\begin{split} & \mathsf{x}_1 = \mathsf{G}(\mathsf{x}_0); \, \mathsf{F}_0 = \mathsf{G}(\mathsf{x}_0) - \mathsf{x}_0 \\ & \mathsf{for} \ k = 1, \dots \ \mathsf{do} \\ & m_k \leq \min(m, k) \\ & \mathsf{F}_k = \mathsf{G}(\mathsf{x}_k) - \mathsf{x}_k \\ & \mathsf{Minimize} \parallel \sum_{j=0}^{m_k} \alpha_j^k \mathsf{F}_{k-m_k+j} \parallel \text{ subject to } \sum_{j=0}^{m_k} \alpha_j^k = 1. \\ & \mathsf{x}_{k+1} = \sum_{j=0}^{m_k} \alpha_j^k \mathsf{G}(\mathsf{x}_{k-m_k+j}) \\ & \mathsf{end for} \end{split}$$

3

イロン イヨン イヨン イヨン

Remember the words

- *m*, depth. We refer to Anderson(*m*).
 Anderson(0) is Picard.
- F(x) = G(x) x, residual
- $\{\alpha_j^k\}$, coefficients Minimize $\|\sum_{j=0}^{m_k} \alpha_j^k F_{k-m_k+j}\|$ subject to $\sum_{j=0}^{m_k} \alpha_j^k = 1$. is the optimization problem.

•
$$\|\cdot\|$$
 is ℓ^2 in this talk.

* 圖 * * 注 * * 注 * … 注

Solving the Optimization Problem

Solve the linear least squares problem:

$$\min \left\|\mathsf{F}_{m_k} - \sum_{j=0}^{m_k-1} \alpha_j^k (\mathsf{F}_{k-m_k+j} - \mathsf{F}_k)\right\|_2^2,$$

for $\{\alpha_j^k\}_{j=0}^{m_k-1}$ and then

$$\alpha_{m_k}^k = 1 - \sum_{j=0}^{m_k-1} \alpha_j^k.$$

More or less what's in the codes, BUT ...

물에서 물에 다

11/30

크

- you have to store
 - Coefficient matrix for the optimization problem F
 - Iteration history G
- So a minimum of 2m + O(1) vectors.
- Even if you manage $m_k \leq m$, you must store 2m vectors.
- Many physics codes use the normal equations and get 2m.
 Example RMG
- But the coefficient matrix is very ill-conditioned

æ

白 と く ヨ と く ヨ と …

Walker-Ni Formulation: I

Maintain a QR factorization of the coefficient matrix. Reformulate the optimization problem:

$$\min_{\theta \in R^{m_k}} \|\mathsf{F}(\mathsf{x}_k) - \sum_{j=0}^{m_k-1} \theta_j(\mathsf{F}(\mathsf{x}_{k-m_k+j+1}) - \mathsf{F}(\mathsf{x}_{k-m_k+j}))\|$$

for $\theta^k \in R^{m_k}$ then

$$x_{k+1} = G(x_k) - \sum_{j=0}^{m_k-1} \theta_j^k (G(x_{k-m_k+j+1}) - G(x_{k-m_k+j})).$$

In terms of the original formulation

$$\alpha_0 = \theta_0, \alpha_j = \theta_j - \theta_{j-1} \text{ for } 1 \le j \le m_k - 1 \text{ and } \alpha_{m_k} = 1 - \theta_{m_k-1}.$$

Walker-Ni Formulation: II

Let D_F^k and D_G^k have columns

$$(\mathsf{D}_F^k)_j = \mathsf{F}(\mathsf{x}_{k-m_k+j+1}) - \mathsf{F}(\mathsf{x}_{k-m_k+j})$$

and

$$(\mathsf{D}_G^k)_j = \mathsf{G}(\mathsf{x}_{k-m_k+j+1}) - \mathsf{G}(\mathsf{x}_{k-m_k+j}).$$

Then the optimization problem is

$$\min \|\mathsf{F}(\mathsf{x}_k) - \mathsf{D}_F^k \theta^k\|$$

and

$$\mathsf{x}_{k+1} = \mathsf{G}(\mathsf{x}_k) - \mathsf{D}_{\mathsf{G}}^k \theta.$$

14 / 30

Э

(1日) (1日) (日)

14/30

Walker-Ni Formulation: III

Walker-Ni update the QR factorization of D_F^k .

- Update D_G by adding a new column and deleteing the leading column (if k > m_k − 1) if necessary.
- Update D_F by adding a new column and deleting the old column if necessary.

Updating the QR factorization of D_F is tricky ...

臣

• • = • • = •

Walker-Ni Formulation: IV

- If k > m_k − 1 you have to update QR to be the factorization of D_F with the first column deleted.
- After that update QR with the new column via Gram-Schmidt I like classical GS twice.

The story of the downdate is ...

Walker-Ni Formulation: IV

Suppose A = QR is the QR factorization of an $N \times m$

$$\mathsf{A} = (\mathsf{a}_1, \mathsf{a}_2, \dots, \mathsf{a}_m) = \mathsf{Q}\mathsf{R} = \mathsf{Q}(\mathsf{r}_1, \mathsf{r}_2, \dots, \mathsf{r}_m).$$

I want the QR factorization of = (a₂,..., a_m) Let R = (r₂,..., r_m), then = QR.

- Factor $\tilde{R} = Q^1 \hat{R}$. Let $\hat{Q} = QQ^1$.
- Then $\hat{A}=\hat{Q}\hat{R}$ is the QR factorization of \hat{A}

Storage Problem!

- You must allocate storage for both \hat{Q} and QQ^1 ,
- then you can overwrite Q with Q.
- So with AA you are now at 3*m* vectors.
- But there's a hack ...
 Compute the product QQ¹ in blocks of rows.
 Overwrite the rows of Q as you progress.
 Slower, but the storage is back under control.
- There's always the normal equations.

- Conductive-Radiative Heat Transport

Conductive-Radiative Heat Transport

(Siewert-Thomas, 91)

- System of two equations
 - Linear Boltzmann transport equation
 - Heat Equation
- Household insulation is the 2D problem
- Coupling via "radiation proportional to 4th power of temperature"
- I'm a mathematician, so it's 1-D in space.
- There's Julia code for all of this in the repo.

Geometry and unknowns

- Unknowns:
 - Dimensionless radiation intensity $\psi(x,\mu)$ (angular flux)
 - Dimensionless temperature $\Theta(x)$
- Radiation depends on direction.

Stand in the sun if you don't believe that.

- μ is cosine of direction angle. $\mu > 0$ means from the left.
- $\mu < 0$ means from the right.

Transport Equation

$$\mu \frac{\partial \psi}{\partial x}(x,\mu) + \psi(x,\mu) = \frac{\omega}{2} \int_{-1}^{1} \psi(x,\mu') \, d\mu' + (1-\omega) \Theta^4(x)$$

for $x \in (0, \tau)$. $0 < \omega \leq 1$ and the boundary conditions are

$$\psi(0,\mu)=\Theta_l^4,\ \mu>0 ext{ and } \psi(au,\mu)=\Theta_r^4,\ \mu<0.$$

2

イロン 不同 とうほう 不同 とう

- Conductive-Radiative Heat Transport

Some facts about transport with Θ given

Trust me on this. Details in the book.

Given Θ the transport equation is a linear equation for f

Can formulate as a linear equation for the scalar flux

$$f(x) = \frac{1}{2} \int_{-1}^{1} \psi(x, \mu') \, d\mu'$$

The operator is a compact perturbation of the identity, so ...

GMRES works very well as a solver.

Heat equation

$$rac{\partial^2 \Theta}{\partial x^2} = Q(x), x \in [0, \tau], \ \Theta(0) = \Theta_I, \Theta(\tau) = \Theta_r$$

where

$$Q(x) = \alpha(x)(\Theta^{4}(x) - f(x)), 0 < x < \tau, f(x) = \frac{1}{2} \int_{-1}^{1} \psi(x, \mu') \, d\mu'$$

and

$$\alpha(\mathbf{x}) = (1-\omega)/N_c.$$

 N_c is the conduction to radiation parameter.

Ð,

イロン 不同 とくほど 不同 とう

- Conductive-Radiative Heat Transport

Compact fixed point formulation: $\Theta = \mathcal{G}(\Theta)$

- Given Θ solve the transport equation with an iterative method to obtain f.
- 2 Use the solution f of the transport equation from step 1 to compute Q = α(Θ⁴ f).
- **3** Compute $\mathcal{G}(\Theta) = T$ as the solution of the heat equation.

$$rac{\partial^2 T}{\partial x^2} = Q(x), x \in [0, \tau], \ T(0) = \Theta_I, T(\tau) = \Theta_r$$

We choose to **expose** Θ . Exposing *f* is ok.

(日) (モン・モン・モ

- N = 1001 point uniform grid in space
- Discrete ordinates Sn method for transport
 - Double (20 pt) Gauss quadrature rule in angle
- Central difference for heat equation.

Problem parameters: τ , ω , N_c , θ_r , θ_l Three problems Easy: $N_c = .05, \omega = .9, \tau = 1, \Theta_l = 0, \Theta_r = 0$ Less Easy : $N_c = .05, \omega = .9, \tau = 2, \Theta_l = 0, \Theta_r = 1.8$ Hard: $N_c = .05, \omega = .9, \tau = 4, \Theta_l = 0, \Theta_r = 2.0$ Compare AA(*m*) for several *m* with Newton-GMRES

3

・回 ・ ・ ヨ ・ ・ ヨ ・ …

Easy Problem

C. T. Kelley An

Anderson Acceleration

27 / 30

- Conductive-Radiative Heat Transport

Less Easy Problem: not contractive

C. T. Kelley

Anderson Acceleration

Conductive-Radiative Heat Transport

Hard Problem: really not contractive

29/30

Anderson Acceleration

29/30

- New book: Codes + Examples in Julia
- Storage: Needs thought
- Multi-Physics Example: Conductive-Radiative Heat Transport AA is not always the thing to do.