
Anderson Acceleration 1 / 30

Anderson Acceleration:
Software, Storage, and a Multi-Physics Example

C. T. Kelley
NC State University

tim kelley@ncsu.edu

Supported by NSF, DOE, ARO

ICERM, July 26, 2023

C. T. Kelley Anderson Acceleration 1 / 30



Anderson Acceleration 2 / 30

Outline

1 New Book

2 Storage Issues in Anderson Acceleration

3 Conductive-Radiative Heat Transport

4 Summary

C. T. Kelley Anderson Acceleration 2 / 30



Anderson Acceleration 3 / 30

New Book

New Book: Great holiday gift
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New Book

Coverage

Sequel to
C. T. Kelley, Solving Nonlinear Equations with Newton’s
Method, number 1 in Fundamentals of Algorithms, SIAM,
Philadelphia, 2003.

Differences

Completely new code in Julia
Deletion: Broyden’s method
Additions: ΨTC + Anderson Acceleration
Software + Jupyter notebook open source on Github
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New Book

Why Julia?

Better mixed precision, especially half, support
C. T. Kelley, Newton’s method in mixed precision, SIAM
Review, 64 (2022), pp. 191–211.

Jupyter notebooks

Package infrastructure for software

No licensing pain
Good for retired people
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New Book

Three part project

Print book

IJulia (aka Jupyter) notebook
interactive version of print book
https://github.com/ctkelley/NotebookSIAMFANL

Julia package with solvers+test problems+examples
https://github.com/ctkelley/SIAMFANLEquations.jl

Print book is for sale. Notebook and Package are free.
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New Book

How to do projects like this

Motivated by R. LeVeque’s project:

Print book
Notebooks
notebook → print book with Python

Mappings are different

notebook → print book
print book → notebook

Many things to figure out on your own.

Randy and Tim were both retired while doing this.
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New Book

Coverage of Anderson Acceleration

Nothing fancy (fixed β, no EDIIS, no depth management, . . . )

Theory (Basic stuff, no proofs)

Discussion of Implementation

CODE

Examples

The rest of this talk is about the implementation and one example.
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Storage Issues in Anderson Acceleration

What does AA store?

The simple version of AA fori x = G(x) is anderson(x0,G,m)

x1 = G(x0); F0 = G(x0)− x0
for k = 1, . . . do
mk ≤ min(m, k)
Fk = G(xk)− xk
Minimize ‖

∑mk
j=0 α

k
j Fk−mk+j‖ subject to

∑mk
j=0 α

k
j = 1.

xk+1 =
∑mk

j=0 α
k
j G(xk−mk+j)

end for
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Storage Issues in Anderson Acceleration

Remember the words

m, depth. We refer to Anderson(m).
Anderson(0) is Picard.

F(x) = G(x)− x, residual

{αk
j }, coefficients

Minimize ‖
∑mk

j=0 α
k
j Fk−mk+j‖ subject to

∑mk
j=0 α

k
j = 1.

is the optimization problem.

‖ · ‖ is `2 in this talk.
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Storage Issues in Anderson Acceleration

Solving the Optimization Problem

Solve the linear least squares problem:

min

∥∥∥∥Fmk
−

mk−1∑
j=0

αk
j (Fk−mk+j − Fk)

∥∥∥∥2
2

,

for {αk
j }

mk−1
j=0 and then

αk
mk

= 1−
mk−1∑
j=0

αk
j .

More or less what’s in the codes, BUT . . .
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Storage Issues in Anderson Acceleration

Storage

you have to store

Coefficient matrix for the optimization problem F
Iteration history G

So a minimum of 2m + O(1) vectors.

Even if you manage mk ≤ m, you must store 2m vectors.

Many physics codes use the normal equations and get 2m.
Example RMG

But the coefficient matrix is very ill-conditioned . . .
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Storage Issues in Anderson Acceleration

Walker-Ni Formulation: I

Maintain a QR factorization of the coefficient matrix.
Reformulate the optimization problem:

min
θ∈Rmk

‖F(xk)−
mk−1∑
j=0

θj(F(xk−mk+j+1)− F(xk−mk+j))‖

for θk ∈ Rmk then

xk+1 = G(xk)−
mk−1∑
j=0

θkj (G(xk−mk+j+1)− G(xk−mk+j)).

In terms of the original formulation

α0 = θ0, αj = θj − θj−1 for 1 ≤ j ≤ mk − 1 and αmk
= 1− θmk−1.
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Storage Issues in Anderson Acceleration

Walker-Ni Formulation: II

Let Dk
F and Dk

G have columns

(Dk
F )j = F(xk−mk+j+1)− F(xk−mk+j)

and
(Dk

G )j = G(xk−mk+j+1)− G(xk−mk+j).

Then the optimization problem is

min ‖F(xk)− Dk
F θ

k‖

and
xk+1 = G(xk)− Dk

Gθ.
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Storage Issues in Anderson Acceleration

Walker-Ni Formulation: III

Walker-Ni update the QR factorization of Dk
F .

Update DG by adding a new column and deleteing the leading
column (if k > mk − 1) if necessary.

Update DF by adding a new column and deleting the old
column if necessary.

Updating the QR factorization of DF is tricky . . .
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Storage Issues in Anderson Acceleration

Walker-Ni Formulation: IV

If k > mk − 1 you have to update QR to be the factorization
of DF with the first column deleted.

After that update QR with the new column via Gram-Schmidt
I like classical GS twice.

The story of the downdate is . . .
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Storage Issues in Anderson Acceleration

Walker-Ni Formulation: IV

Suppose A = QR is the QR factorization of an N ×m

A = (a1, a2, . . . , am) = QR = Q(r1, r2, . . . , rm).

I want the QR factorization of Â = (a2, . . . , am)

Let R̃ = (r2, . . . , rm), then Â = QR̃.

Factor R̃ = Q1R̂. Let Q̂ = QQ1.

Then Â = Q̂R̂ is the QR factorization of Â
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Storage Issues in Anderson Acceleration

Storage Problem!

You must allocate storage for both Q̂ and QQ1,

then you can overwrite Q with Q̂.

So with AA you are now at 3m vectors.

But there’s a hack . . .
Compute the product QQ1 in blocks of rows.
Overwrite the rows of Q as you progress.
Slower, but the storage is back under control.

There’s always the normal equations.
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Conductive-Radiative Heat Transport

Conductive-Radiative Heat Transport

(Siewert-Thomas, 91)

System of two equations

Linear Boltzmann transport equation
Heat Equation

Household insulation is the 2D problem

Coupling via “radiation proportional to 4th power of
temperature”

I’m a mathematician, so it’s 1-D in space.

There’s Julia code for all of this in the repo.
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Conductive-Radiative Heat Transport

Geometry and unknowns

Unknowns:

Dimensionless radiation intensity ψ(x , µ) (angular flux)
Dimensionless temperature Θ(x)

Radiation depends on direction.
Stand in the sun if you don’t believe that.
µ is cosine of direction angle. µ > 0 means from the left.
µ < 0 means from the right.
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Conductive-Radiative Heat Transport

Transport Equation

µ
∂ψ

∂x
(x , µ) + ψ(x , µ) =

ω

2

∫ 1

−1
ψ(x , µ′) dµ′ + (1− ω)Θ4(x)

for x ∈ (0, τ). 0 < ω ≤ 1 and the boundary conditions are

ψ(0, µ) = Θ4
l , µ > 0 and ψ(τ, µ) = Θ4

r , µ < 0.
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Conductive-Radiative Heat Transport

Some facts about transport with Θ given

Trust me on this. Details in the book.
Given Θ the transport equation is a linear equation for f

Can formulate as a linear equation for the scalar flux

f (x) =
1

2

∫ 1

−1
ψ(x , µ′) dµ′

The operator is a compact perturbation of the identity, so . . .

GMRES works very well as a solver.
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Conductive-Radiative Heat Transport

Heat equation

∂2Θ

∂x2
= Q(x), x ∈ [0, τ ], Θ(0) = Θl ,Θ(τ) = Θr

where

Q(x) = α(x)(Θ4(x)− f (x)), 0 < x < τ , f (x) =
1

2

∫ 1

−1
ψ(x , µ′) dµ′

and
α(x) = (1− ω)/Nc .

Nc is the conduction to radiation parameter.
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Conductive-Radiative Heat Transport

Compact fixed point formulation: Θ = G(Θ)

1 Given Θ solve the transport equation with an iterative method
to obtain f .

2 Use the solution f of the transport equation from step 1 to
compute Q = α(Θ4 − f ).

3 Compute G(Θ) = T as the solution of the heat equation.

∂2T

∂x2
= Q(x), x ∈ [0, τ ], T (0) = Θl ,T (τ) = Θr

We choose to expose Θ. Exposing f is ok.
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Conductive-Radiative Heat Transport

Discretization

N = 1001 point uniform grid in space

Discrete ordinates Sn method for transport

Double (20 pt) Gauss quadrature rule in angle

Central difference for heat equation.
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Conductive-Radiative Heat Transport

Examples

Problem parameters: τ , ω, Nc , θr , θl
Three problems

Easy: Nc = .05, ω = .9, τ = 1,Θl = 0,Θr = 0
Less Easy : Nc = .05, ω = .9, τ = 2,Θl = 0,Θr = 1.8
Hard: Nc = .05, ω = .9, τ = 4,Θl = 0,Θr = 2.0

Compare AA(m) for several m with Newton-GMRES
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Conductive-Radiative Heat Transport

Easy Problem

0 3 6 9 12
Iterations

10 9

10 7

10 5

10 3

10 1

Re
la

tiv
e 

re
sid

ua
l

=  1.0; =  0.9; r =  0.0
m =0
m =2
m =5
Newton-GMRES

0 4 8 12
Function Evaluations

10 9

10 7

10 5

10 3

10 1

C. T. Kelley Anderson Acceleration 27 / 30



Anderson Acceleration 28 / 30

Conductive-Radiative Heat Transport

Less Easy Problem: not contractive
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Conductive-Radiative Heat Transport

Hard Problem: really not contractive
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Summary

Summary

New book: Codes + Examples in Julia

Storage: Needs thought

Multi-Physics Example:
Conductive-Radiative Heat Transport
AA is not always the thing to do.
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