Anderson Acceleration:

Software, Storage, and a Multi-Physics Example

C. T. Kelley
NC State University
tim_kelley@ncsu.edu
Supported by NSF, DOE, ARO

ICERM, July 26, 2023

Outline

1 New Book

2 Storage Issues in Anderson Acceleration

3 Conductive-Radiative Heat Transport

4 Summary

New Book: Great holiday gift

Coverage

- Sequel to
C. T. Kelley, Solving Nonlinear Equations with Newton's Method, number 1 in Fundamentals of Algorithms, SIAM, Philadelphia, 2003.
- Differences
- Completely new code in Julia
- Deletion: Broyden's method
- Additions: $\Psi T C+$ Anderson Acceleration
- Software + Jupyter notebook open source on Github

Why Julia?

- Better mixed precision, especially half, support C. T. Kelley, Newton's method in mixed precision, SIAM Review, 64 (2022), pp. 191-211.
- Jupyter notebooks

■ Package infrastructure for software

- No licensing pain

Good for retired people

Three part project

- Print book
- IJulia (aka Jupyter) notebook interactive version of print book https://github.com/ctkelley/NotebookSIAMFANL
- Julia package with solvers+test problems+examples https://github.com/ctkelley/SIAMFANLEquations.jl
Print book is for sale. Notebook and Package are free.

How to do projects like this

■ Motivated by R. LeVeque's project:
■ Print book

- Notebooks
- notebook \rightarrow print book with Python

■ Mappings are different
■ notebook \rightarrow print book

- print book \rightarrow notebook

■ Many things to figure out on your own.
■ Randy and Tim were both retired while doing this.

Coverage of Anderson Acceleration

■ Nothing fancy (fixed β, no EDIIS, no depth management, ...)

- Theory (Basic stuff, no proofs)
- Discussion of Implementation
- CODE
- Examples

The rest of this talk is about the implementation and one example.

What does AA store?

The simple version of $A A$ fori $x=G(x)$ is anderson $\left(x_{0}, G, m\right)$
$\mathrm{x}_{1}=\mathrm{G}\left(\mathrm{x}_{0}\right) ; \mathrm{F}_{0}=\mathrm{G}\left(\mathrm{x}_{0}\right)-\mathrm{x}_{0}$
for $k=1, \ldots$ do
$m_{k} \leq \min (m, k)$
$\mathrm{F}_{k}=\mathrm{G}\left(\mathrm{x}_{k}\right)-\mathrm{x}_{k}$
Minimize $\left\|\sum_{j=0}^{m_{k}} \alpha_{j}^{k} F_{k-m_{k}+j}\right\|$ subject to $\sum_{j=0}^{m_{k}} \alpha_{j}^{k}=1$.
$\mathrm{x}_{k+1}=\sum_{j=0}^{m_{k}} \alpha_{j}^{k} \mathrm{G}\left(\mathrm{x}_{k-m_{k}+j}\right)$
end for

Remember the words

- m, depth. We refer to Anderson (m).

Anderson(0) is Picard.

- $F(x)=G(x)-x$, residual
- $\left\{\alpha_{j}^{k}\right\}$, coefficients

Minimize $\left\|\sum_{j=0}^{m_{k}} \alpha_{j}^{k} F_{k-m_{k}+j}\right\|$ subject to $\sum_{j=0}^{m_{k}} \alpha_{j}^{k}=1$.
is the optimization problem.

- $\|\cdot\|$ is ℓ^{2} in this talk.

Solving the Optimization Problem

Solve the linear least squares problem:

$$
\min \left\|F_{m_{k}}-\sum_{j=0}^{m_{k}-1} \alpha_{j}^{k}\left(F_{k-m_{k}+j}-F_{k}\right)\right\|_{2}^{2}
$$

for $\left\{\alpha_{j}^{k}\right\}_{j=0}^{m_{k}-1}$ and then

$$
\alpha_{m_{k}}^{k}=1-\sum_{j=0}^{m_{k}-1} \alpha_{j}^{k}
$$

More or less what's in the codes, BUT . . .

Storage

- you have to store

■ Coefficient matrix for the optimization problem F

- Iteration history G

■ So a minimum of $2 m+O(1)$ vectors.

- Even if you manage $m_{k} \leq m$, you must store $2 m$ vectors.

■ Many physics codes use the normal equations and get $2 m$. Example RMG
■ But the coefficient matrix is very ill-conditioned...

Walker-Ni Formulation: I

Maintain a QR factorization of the coefficient matrix.
Reformulate the optimization problem:

$$
\min _{\theta \in R^{m_{k}}}\left\|\mathrm{~F}\left(\mathrm{x}_{k}\right)-\sum_{j=0}^{m_{k}-1} \theta_{j}\left(\mathrm{~F}\left(\mathrm{x}_{k-m_{k}+j+1}\right)-\mathrm{F}\left(\mathrm{x}_{k-m_{k}+j}\right)\right)\right\|
$$

for $\theta^{k} \in R^{m_{k}}$ then

$$
\mathrm{x}_{k+1}=\mathrm{G}\left(\mathrm{x}_{k}\right)-\sum_{j=0}^{m_{k}-1} \theta_{j}^{k}\left(\mathrm{G}\left(\mathrm{x}_{k-m_{k}+j+1}\right)-\mathrm{G}\left(\mathrm{x}_{k-m_{k}+j}\right)\right)
$$

In terms of the original formulation
$\alpha_{0}=\theta_{0}, \alpha_{j}=\theta_{j}-\theta_{j-1}$ for $1 \leq j \leq m_{k}-1$ and $\alpha_{m_{k}}=1-\theta_{m_{k}-1}$.

Walker-Ni Formulation: II

Let D_{F}^{k} and D_{G}^{k} have columns

$$
\left(\mathrm{D}_{F}^{k}\right)_{j}=\mathrm{F}\left(\mathrm{x}_{k-m_{k}+j+1}\right)-\mathrm{F}\left(\mathrm{x}_{k-m_{k}+j}\right)
$$

and

$$
\left(\mathrm{D}_{G}^{k}\right)_{j}=\mathrm{G}\left(\mathrm{x}_{k-m_{k}+j+1}\right)-\mathrm{G}\left(\mathrm{x}_{k-m_{k}+j}\right)
$$

Then the optimization problem is

$$
\min \left\|F\left(x_{k}\right)-D_{F}^{k} \theta^{k}\right\|
$$

and

$$
\mathrm{x}_{k+1}=\mathrm{G}\left(\mathrm{x}_{k}\right)-\mathrm{D}_{G}^{k} \theta
$$

Walker-Ni Formulation: III

Walker-Ni update the QR factorization of D_{F}^{k}.

- Update D_{G} by adding a new column and deleteing the leading column (if $k>m_{k}-1$) if necessary.
- Update D_{F} by adding a new column and deleting the old column if necessary.
Updating the QR factorization of D_{F} is tricky ...

Walker-Ni Formulation: IV

■ If $k>m_{k}-1$ you have to update QR to be the factorization of D_{F} with the first column deleted.
■ After that update QR with the new column via Gram-Schmidt I like classical GS twice.

The story of the downdate is ...

Walker-Ni Formulation: IV

- Suppose $\mathrm{A}=\mathrm{QR}$ is the QR factorization of an $N \times m$

$$
A=\left(a_{1}, a_{2}, \ldots, a_{m}\right)=Q R=Q\left(r_{1}, r_{2}, \ldots, r_{m}\right)
$$

- I want the $Q R$ factorization of $\hat{A}=\left(a_{2}, \ldots, a_{m}\right)$
- Let $\tilde{R}=\left(r_{2}, \ldots, r_{m}\right)$, then $\hat{A}=Q \tilde{R}$.
- Factor $\tilde{R}=Q^{1} \hat{R}$. Let $\hat{Q}=Q^{1}$.
- Then $\hat{A}=\hat{Q} \hat{R}$ is the $Q R$ factorization of \hat{A}

Storage Problem!

■ You must allocate storage for both \hat{Q} and QQ^{1},

- then you can overwrite Q with \hat{Q}.
- So with AA you are now at $3 m$ vectors.

■ But there's a hack...
Compute the product QQ^{1} in blocks of rows.
Overwrite the rows of Q as you progress.
Slower, but the storage is back under control.

- There's always the normal equations.

Conductive-Radiative Heat Transport

(Siewert-Thomas, 91)
■ System of two equations
■ Linear Boltzmann transport equation

- Heat Equation
- Household insulation is the 2D problem

■ Coupling via "radiation proportional to 4 th power of temperature"
■ I'm a mathematician, so it's 1-D in space.

- There's Julia code for all of this in the repo.

Geometry and unknowns

■ Unknowns:

- Dimensionless radiation intensity $\psi(x, \mu)$ (angular flux)
- Dimensionless temperature $\Theta(x)$
- Radiation depends on direction. Stand in the sun if you don't believe that. μ is cosine of direction angle. $\mu>0$ means from the left. $\mu<0$ means from the right.

Transport Equation

$$
\mu \frac{\partial \psi}{\partial x}(x, \mu)+\psi(x, \mu)=\frac{\omega}{2} \int_{-1}^{1} \psi\left(x, \mu^{\prime}\right) d \mu^{\prime}+(1-\omega) \Theta^{4}(x)
$$

for $x \in(0, \tau) .0<\omega \leq 1$ and the boundary conditions are

$$
\psi(0, \mu)=\Theta_{l}^{4}, \mu>0 \text { and } \psi(\tau, \mu)=\Theta_{r}^{4}, \mu<0 .
$$

Some facts about transport with Θ given

Trust me on this. Details in the book.
Given Θ the transport equation is a linear equation for f
■ Can formulate as a linear equation for the scalar flux

$$
f(x)=\frac{1}{2} \int_{-1}^{1} \psi\left(x, \mu^{\prime}\right) d \mu^{\prime}
$$

- The operator is a compact perturbation of the identity, so ...

■ GMRES works very well as a solver.

Heat equation

$$
\frac{\partial^{2} \Theta}{\partial x^{2}}=Q(x), x \in[0, \tau], \Theta(0)=\Theta_{l}, \Theta(\tau)=\Theta_{r}
$$

where

$$
Q(x)=\alpha(x)\left(\Theta^{4}(x)-f(x)\right), 0<x<\tau, f(x)=\frac{1}{2} \int_{-1}^{1} \psi\left(x, \mu^{\prime}\right) d \mu^{\prime}
$$

and

$$
\alpha(x)=(1-\omega) / N_{c} .
$$

N_{c} is the conduction to radiation parameter.

Compact fixed point formulation: $\Theta=\mathcal{G}(\Theta)$

1 Given Θ solve the transport equation with an iterative method to obtain f.

2 Use the solution f of the transport equation from step 1 to compute $\boldsymbol{Q}=\alpha\left(\Theta^{4}-f\right)$.
3 Compute $\mathcal{G}(\Theta)=T$ as the solution of the heat equation.

$$
\frac{\partial^{2} T}{\partial x^{2}}=Q(x), x \in[0, \tau], T(0)=\Theta_{l}, T(\tau)=\Theta_{r}
$$

We choose to expose Θ. Exposing f is ok.

Discretization

■ $N=1001$ point uniform grid in space

- Discrete ordinates Sn method for transport
- Double (20 pt) Gauss quadrature rule in angle
- Central difference for heat equation.

Examples

Problem parameters: $\tau, \omega, N_{c}, \theta_{r}, \theta_{l}$
Three problems
Easy: $\quad N_{c}=.05, \omega=.9, \tau=1, \Theta_{l}=0, \Theta_{r}=0$
Less Easy: $\quad N_{c}=.05, \omega=.9, \tau=2, \Theta_{l}=0, \Theta_{r}=1.8$
Hard:

$$
N_{c}=.05, \omega=.9, \tau=4, \Theta_{l}=0, \Theta_{r}=2.0
$$

Compare $\mathrm{AA}(m)$ for several m with Newton-GMRES

Easy Problem

- Conductive-Radiative Heat Transport

Less Easy Problem: not contractive

Hard Problem: really not contractive

Summary

■ New book: Codes + Examples in Julia
■ Storage: Needs thought
■ Multi-Physics Example:
Conductive-Radiative Heat Transport AA is not always the thing to do.

