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EDIIS

Motivation

Anderson Acceleration Algorithm

Solve fixed point problems

u = G(u)

faster than Picard iteration

uk+1 = G(uk).

Motivation (Anderson 1965) SCF iteration in electronic structure
computations.
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EDIIS

Motivation

Why not Newton?

Newton’s method

uk+1 = uk − (I − G′(uk))−1(uk − G(uk))

converges faster,

does not require that G be a contraction,

needs G′(u) or G′(u)w.

Sometimes you will not have G′.
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EDIIS

Motivation

Electronic Structure Computations

Nonlinear eignevalue problem: Kohn-Sham equations

Hks [ψi ] = −1

2
∇2ψi + V (ρ)ψi = λiψi i = 1, . . . ,N

where the charge density is

ρ =
N∑
i=1

‖ψi‖2.

Write this as
H(ρ)Ψ = ΛΨ
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EDIIS

Motivation

Self-Consistent Field iteration (SCF)

Given ρ

Solve the linear eigenvalue problem

H(ρ)Ψ = ΛΨ

for the N eigenvalues/vectors you want.

Update the charge density via

ρ←
N∑
i=1

‖ψi‖2.

Terminate if change in ρ is sufficiently small.
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EDIIS

Motivation

SCF as a fixed-point iteration

SCF is a fixed point iteration

ρ← G (ρ)

Not clear how to differentiate G

termination criteria in eigen-solver

multiplicities of eigenvalues not know at the start

Bad news: you really have a fixed point problem in Ψ!
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EDIIS

Motivation

Multiphysics Coupling

Given several simulators: {Sj}NS
j=1

The simulators depend on a partition {Xj}NS
j=1 of the primary

variables

Si computes Xi as a function of Zi = {Xj}j 6=i

The maps Si could contain

Black-box solvers
Legacy codes
Table lookups
Internal stochastics

Jacobian information very hard to get.
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EDIIS

Motivation

Iteration to self-consistency

Chose one Xi to expose. Then

for j = 1 : NS , j 6= i
Xj = Sj(Zj)

Xi ← Si (Zi )

This is a fixed point problem
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EDIIS

Motivation

Example: NS = 3
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EDIIS

Algorithms and Theory

Anderson Acceleration

anderson(u0,G,m)

u1 = G(u0); F0 = G(u0)− u0
for k = 1, . . . do
mk ≤ min(m, k)
Fk = G(uk)− uk
Minimize ‖∑mk

j=0 α
k
j Fk−mk+j‖ subject to

∑mk
j=0 α

k
j = 1.

uk+1 =
∑mk

j=0 α
k
j G(uk−mk+j)

end for
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EDIIS

Algorithms and Theory

Other names for Anderson

Pulay mixing (Pulay 1980)

Direct iteration on the iterative subspace (DIIS)
Rohwedder/Scheneider 2011

Nonlinear GMRES (Washio 1997)
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EDIIS

Algorithms and Theory

Terminology

m, depth. We refer to Anderson(m).
Anderson(0) is Picard.

F(u) = G(u)− u, residual

{αk
j }, coefficients

Minimize ‖∑mk
j=0 α

k
j Fk−mk+j‖ subject to

∑mk
j=0 α

k
j = 1.

is the optimization problem.

‖ · ‖, `2, `1, or `∞
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EDIIS

Algorithms and Theory

Solving the Optimization Problem

Solve the linear least squares problem:

min

∥∥∥∥Fmk
−

mk−1∑
j=0

αk
j (Fk−mk+j − Fk)

∥∥∥∥2
2

,

for {αk
j }mk−1

j=0 and then

αk
mk

= 1−
mk−1∑
j=0

αk
j .

More or less what’s in the codes.
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EDIIS

Algorithms and Theory

Details

Many codes (RMG, for example) solve the normal equations.
Not clear how bad that is.

Using QR would be better. More on this later.

LP solve for ‖ · ‖1 and ‖ · ‖∞.
That’s bad for our customers.
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EDIIS

Algorithms and Theory

Convergence Theory

Most older work assumed unlimited storage or very special
cases.

For unlimited storage, Anderson looks like a Krylov method
and it is equivalent to GMRES (Walker-Ni 2011).
See also (Potra 2012).
Anderson is also equivalent to a multi-secant quasi-Newton
method (Fang-Saad + many others).

In practice m ≤ 5 most of the time
and 5 is generous.

The first general convergence results for the method
as implemented in practice are ours.

Convergence results have been local.
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EDIIS

Convergence Results

Convergence Results: Toth-K 2015

Critical idea: prove acceleration instead of convergence.

Assume G is a contraction, constant c.
Objective: do no worse than Picard

Local nonlinear theory; ‖e0‖ is small.

Better results for ‖ · ‖2.
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EDIIS

Convergence Results

Linear Problems, Toth, K 2015

Here

G(u) = Mu + b, ‖M‖ ≤ c < 1, and F(u) = b− (I−M)u.

Theorem: ‖F(uk+1)‖ ≤ c‖F(uk)‖
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EDIIS

Convergence Results

Proof: I

Since
∑
αj = 1, the new residual is

F(uk+1) = b − (I −M)uk+1

=
∑mk

j=0 αj [b − (I −M)(b + Muk−mk+j)]

=
∑mk

j=0 αjM [b − (I −M)uk−mk+j ]

= M
∑mk

j=0 αjF(uk−mk+j)

Take norms to get . . .

C. T. Kelley EDIIS CityU, May 2018 20 / 58



EDIIS

Convergence Results

Proof: II

‖F(uk+1)‖ ≤ c

∥∥∥∥ mk∑
j=0

αjF(uk−mk+j)

∥∥∥∥
Optimality implies that∥∥∥∥ mk∑

j=0

αjF(uk−mk+j)

∥∥∥∥ ≤ ‖F(uk)‖.

That’s it.
Use Taylor for the nonlinear case, which means local convergence.
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EDIIS

Convergence Results

Assumptions: m = 1

There is u∗ ∈ RN such that F(u∗) = G(u∗)− u∗ = 0.

‖G(u)− G(v)‖ ≤ c‖u − v‖ for u, v near u∗.

G is continuously differentiable near u∗

G has a fixed point and is a smooth contraction in a neighborhood
of that fixed point.
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EDIIS

Convergence Results

Convergence for Anderson(1) with `2 optimization

Anderson(1) converges and

lim sup
k→∞

‖F(uk+1)‖2
‖F(uk)‖2

≤ c .

Very special case:

Optimization problem is trivial.

No iteration history to keep track of.

On the other hand . . .
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EDIIS

Convergence Results

Assumptions: m > 1, any norm

The assumptions for m = 1 hold.

There is Mα such that for all k ≥ 0

mk∑
j=1

|αj | ≤ Mα.

Do this by

Hoping for the best.
Reduce mk until it happens.
Reduce mk for conditioning(?)
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EDIIS

Convergence Results

Convergence for Anderson(m), any norm.

Toth-K, Chen-K
If u0 is sufficiently close to u∗ then the Anderson iteration
converges to u∗ r-linearly with r-factor no greater than ĉ . In fact

lim sup
k→∞

(‖F(uk)‖
‖F(u0)‖

)1/k

≤ c . (1)

Anderson acceleration is not an insane thing to do.

C. T. Kelley EDIIS CityU, May 2018 25 / 58



EDIIS

Convergence Results

Comments

The local part is serious and is a problem in the chemistry codes.

No guarantee the convergence is monotone. See this in practice.

The conditioning of the least squares problem can be poor.
But that has only a small(???) effect on the results.

The results do not completely reflect practice in that...

Theory seems to be sharp for some problems. But . . .
convergence can sometimes be very fast. Why?
Convergence can depend on physics.
The mathematics does not yet reflect that.
There are many variations in the chemistry/physics literature,
which are not well understood.
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EDIIS

Convergence Results

EDIIS: Kudin, Scuseria, Cancès 2002

EDIIS (Energy DIIS) globalizes Anderson by constraining αk
j ≥ 0.

The optimization problem is

Minimize

∥∥∥∥Fk −
mk−1∑
j=0

αk
j (Fk−mk+j − Fk)

∥∥∥∥2
2

≡ ‖Aαk − Fk‖22.

subject to
mk−1∑
j=0

αk
j ≤ 1, αk

j ≥ 0.
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EDIIS

Convergence Results

Solving the optimization problem

Solve as a QP and we’d have to compute ATA.
A is often very ill-contitioned.

We used QR before which exposed the ill-contitioning
less badly.

The Golub-Saunders active set method (1969!) does that.

You’re looking for the minimum in a smaller set,
can that hurt?
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EDIIS

Convergence Results

Easy problem from Kudin et al

On the other hand, EDIIS is an interpolation scheme: the
coefficientsci are chosen non-negative to ensure that the
interpolated density matrixD̃k belongs to the convex setP̃.
If, as in DIIS, we do not incorporate the inequality con-
straintsci>0, the algorithm fails. We therefore have to solve
the optimization problem

infH E•c2
1

2
cTBc, ci>0, (

i 50

k

ci51J . ~15!

A local minimum of this problem can be obtained with the
reduced gradient algorithm.15 As long as the dimension of
the problem is small~say, for single digit values ofk!, the
global minimum can also be obtained easily by solving the
2k21 equality constrained quadratic programming problems

infH E•c2
1

2
cTBc, (

i 50

k

ci51, ci50 for i PAJ , ~16!

for each set of active constraintsA,$0,1,...,k%, A
Þ$0,1,...,k%, and retaining only the admissible solutions
~those for which all theci are non-negative!. An important
comment here is that for DFT methods, the optimal con-
strained solution may contain zero coefficient for the most
recent Fock matrix. This will make the present interpolated
Fock matrixF̃k11 identical to the interpolated Fock matrix at
the previous cycleF̃k . In such cases, in order to force some
progress in the SCF, we employ nonoptimalci coefficients.
Such coefficients are computed by starting from a trial solu-
tion with ck1151 and then updating it by a sequence of
pairwise combinations of the current vector with vectors that
haveci51, wherei goes fromk21 to 0.

IV. BENCHMARKS AND DISCUSSION

The EDIIS algorithm presented here is more efficient
than the previously developed ODA,7 and thus we will focus

in this section on benchmarking EDIIS versus Pulay’s
DIIS.1,2 We omit ODA from our plots and instead comment
wherever appropriate on its similarities or differences with
respect to EDIIS. In Fig. 1, we plot the convergence pattern
log(En2Ec) for CH3CHO ~acetaldehyde! at the
RHF/6-31G(d) level of theory, starting from a guess ob-
tained by diagonalizing the core Hamiltonian matrix. The
acetaldehyde geometry was optimized at the
RHF/6-31G(d,p) level of theory. The methods presented are
DIIS, EDIIS, and fixed-point~unaccelerated! SCF. Since
fixed-point SCF did not converge starting from the core
guess, we started it from the density obtained after two SCF
cycles with EDIIS. The DIIS method is the fastest when the
density matrix is in the convergence region, EDIIS is less
efficient, while simple SCF is the slowest. The ODA conver-
gence~not shown! is very similar to EDIIS. The same situ-
ation is observed in other well-behaved systems. The fact
that convergence with RCA methods is significantly better
than with the fixed-point SCF demonstrates that RCA is a
true acceleration technique. On the other hand, the slower
speed of EDIIS compared to DIIS can be attributed to the
smaller sensitivity of the minimized function~energy versus
orbital rotation gradient! in the region close to convergence.

Our second example is a tetrahedral UF4 molecule at the
RB3LYP/LANL2DZ level of theory~Fig. 2!. The U–F bond
length is 1.98 Å. All calculations were started with the ‘‘Pro-
jected New-EHT Guess’’14 and five matrices were kept in
the queue. The DIIS method by itself does not converge at all
even after hundreds of iterations. EDIIS, on the other hand,
quickly brings the energy rather close to the final value, and
then spends many cycles getting to the minimum. We also
show in Fig. 2 a combination of EDIIS and DIIS, with the
switch to DIIS occurring when the DIIS error drops below
1022. It is quite remarkable that Pulay’s DIIS method ini-
tially aided by EDIIS also spends hundreds of iterations try-
ing to get to the minimum. One can notice, however, that

FIG. 1. Comparison of SCF conver-
gence patterns in a ‘‘well-behaved’’
case: CH3CHO at the RHF/6-31G(d)
level of theory. FP SCF stands for
fixed-point SCF.En is the current SCF
iteration energy andEc is the con-
verged energy. TheEc value is
2152.914 325 877 a.u.

8259J. Chem. Phys., Vol. 116, No. 19, 15 May 2002 SCF convergence

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

152.14.136.96 On: Fri, 20 Mar 2015 15:25:31
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EDIIS

Convergence Results

Hard problem from Kudin et al

once DIIS gets the energy within 1025 a.u. of the solution,
the slope is steeper than for EDIIS~left side in Fig. 2!. We
note that a rather pathological behavior exhibited in this sys-
tem can be rationalized in terms of the flexibility of urani-
um’s f electrons. Overall, while EDIIS provides quite mono-
tonical convergence, DIIS either wanders around trying to
get close to a minimum, or rapidly goes to a minimum once
it gets sufficiently close to it. The ODA method~not shown
in Fig. 2! is slower than EDIIS, although, the overall trend is
similar.

While in the case of the HF method the RCA converged
density matrix always contains integer occupations, for KS-
DFT methods this is not necessarily true.10 As was men-
tioned earlier, RCA converges KS-DFT density to a solution
of a generalized Kohn–Sham problem, which might have
fractional occupations at the Fermi level. Therefore, this fact
leads to two distinct patterns for EDIIS behavior in KS-DFT
calculations. In most cases EDIIS drives the SCF to a solu-
tion with integer occupations. In the second scenario, the
EDIIS interpolated density matrix contains fractional occu-
pations, and no tight convergence is achieved.

An example of a system where EDIIS points to a solu-
tion with fractional occupations is chromium carbide CrC,
with an interatomic distance of 2 Å at the RBLYP/6-31G(d)
level of theory. Figure 3 contains the actual DIIS and EDIIS
energies at each cycle, as well as the EDIIS interpolated
energy computed by Eq.~8!. It is likely that for this example
there is no solution of the standard KS equations with integer
occupations without violation of theaufbauprinciple.16 Con-
sequently, DIIS cannot get anywhere, since we are not using
a level shift to force holes below the Fermi energy. EDIIS
quickly brings the interpolated energy close to the limiting
value; however, the actual energy computed withaufbauoc-
cupations changes from cycle to cycle due to jumping occu-
pations. The substantial discrepancy between actual and in-

terpolated EDIIS energies observed in Fig. 3 indicates that a
low energy solution contains fractional occupation numbers
~FONs!. By starting from a somewhat converged density ma-
trix and using a level shift and DIIS, we were able to get a
solution with integer occupations andaufbauviolations.16

Since DIIS is not able to handle FONs at all, and EDIIS
cannot optimize FONs efficiently, one needs a reliable way
to detect these situations and take appropriate action. We do
emphasize that recognizing FONs is extremely important,
since without switching to FON optimization techniques no
tight convergence can be achieved. In this case, one could
rely on a couple of indicators. First,f EDIIS is a good approxi-

mation to the energy for interpolatedD̃ ~and is exact for the
HF method!. So, whenf EDIIS is significantly lower than any
of the last SCF energies, it is likely that FONs are present. A
more thorough approach is to diagonalize the relaxed density

matrix D̃k and check whether its eigenvalues are close to
either 0 or 1. For cases where fractionally occupied solutions
are the lowest in energy, there are several orbitals clustered
around the Fermi level and an initial guess for fractional

occupations can be extracted from the eigenvalues ofD̃k . In
such cases, the commutator error usually does not drop be-
low ;1022– 531023. Here, one can either switch to a
method that can converge an integer occupied solution with
holes below the Fermi level~DIIS with level shift,3 or con-
jugate gradient density matrix search17! or start optimizing
fractional occupations. While ODA is a possible way to op-
timize FONs, its speed is slow.10 Since at the point where
one can detect FONs the density is already fairly converged,
we believe that FON optimization methods that use more
information about the system are bound to be faster. For
example, the method suggested in Ref. 18 employs orbital
energies to find the optimal amount of charge to be redistrib-
uted among fractionally occupied orbitals. Another interest-

FIG. 2. Comparison of SCF conver-
gence patterns in a ‘‘challenging’’
case: SCF convergence for UF4 at the
RB3LYP/6-31G(d) level of theory. In-
terpolated energies are denoted by
curly brackets.En is the current SCF
iteration energy andEc is the con-
verged energy. TheEc value obtained
in all successfully completed calcula-
tions is2451.219 613 43 a.u.

8260 J. Chem. Phys., Vol. 116, No. 19, 15 May 2002 Kudin, Scuseria, and Cancès
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EDIIS

Example

Example from Radiative Transfer

Chandrasekhar H-equation

H(µ) = G (H) ≡
(

1− ω

2

∫ 1

0

µ

µ+ ν
H(ν) dν.

)−1
ω ∈ [0, 1] is a physical parameter.
F ′(H∗) is singular when ω = 1.

ρ(G ′(H∗)) ≤ 1−
√

1− ω < 1
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EDIIS

Example

Numerical Experiments

Discretize with 500 point composite midpoint rule.

Compare Newton-GMRES with Anderson(m).

Terminate when ‖F (uk)‖2/‖F (u0)‖2 ≤ 10−8

ω = .5, .99, 1.0

0 ≤ m ≤ 6

`1, `2, `∞ optimizations

Tabulate

κmax : max condition number of least squares problems
Smax : max absolute sum of coefficients
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EDIIS

Example

Newton-GMRES vs Anderson(0)

Function evaluations:

Newton-GMRES Fixed Point

ω .5 .99 1.0 .5 .99 1.0

F s 12 18 49 11 75 23970
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EDIIS

Example

Anderson(m)

`1 Optimization `2 Optimization `∞ Optimization

ω m F s κmax Smax F s κmax Smax F s κmax Smax

0.50 1 7 1.00e+00 1.4 7 1.00e+00 1.4 7 1.00e+00 1.5
0.99 1 11 1.00e+00 3.5 11 1.00e+00 4.0 10 1.00e+00 10.1
1.00 1 21 1.00e+00 3.0 21 1.00e+00 3.0 19 1.00e+00 4.8
0.50 2 6 1.36e+03 1.4 6 2.90e+03 1.4 6 2.24e+04 1.4
0.99 2 10 1.19e+04 5.2 10 9.81e+03 5.4 10 4.34e+02 5.9
1.00 2 18 1.02e+05 43.0 16 2.90e+03 14.3 34 5.90e+05 70.0
0.50 3 6 7.86e+05 1.4 6 6.19e+05 1.4 6 5.91e+05 1.4
0.99 3 10 6.51e+05 5.2 10 2.17e+06 5.4 11 1.69e+06 5.9
1.00 3 22 1.10e+08 18.4 17 2.99e+06 23.4 51 9.55e+07 66.7
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EDIIS

Example

Anderson(m)

`1 Optimization `2 Optimization `∞ Optimization

ω m F s κmax Smax F s κmax Smax F s κmax Smax

0.50 4 7 2.64e+09 1.5 6 9.63e+08 1.4 6 9.61e+08 1.4
0.99 4 11 1.85e+09 5.2 11 6.39e+08 5.4 11 1.61e+09 5.9
1.00 4 23 2.32e+08 12.7 21 6.25e+08 6.6 35 1.38e+09 49.0
0.50 5 7 1.80e+13 1.4 6 2.46e+10 1.4 6 2.48e+10 1.4
0.99 5 11 3.07e+10 5.2 12 1.64e+11 5.4 13 3.27e+11 5.9
1.00 5 21 2.56e+09 21.8 27 1.06e+10 14.8 32 4.30e+09 190.8
0.50 6 7 2.65e+14 1.4 6 2.46e+10 1.4 6 2.48e+10 1.4
0.99 6 12 4.63e+11 5.2 12 1.49e+12 5.4 12 2.27e+11 5.9
1.00 6 31 2.61e+10 45.8 35 1.44e+11 180.5 29 3.51e+10 225.7
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EDIIS

Example

Observations

For m > 0, Anderson(m) is much better than Picard

Anderson(m) does better than Newton GMRES

There is little benefit in m ≥ 3

`∞ optimization seems to be a poor idea

`1 optimization appears fine, but the cost is not worth it
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EDIIS

Example

EDIIS Global Theory

Convergence of EDIIS: Chen-K 2017

If G is a contraction in convex Ω then

‖ek − u∗‖ ≤ ck/(m+1)‖e0 − u∗‖

and the convergence is the same as the local theory when near u∗

i.e.

lim sup
k→∞

(‖F(uk)‖
‖F(u0)‖

)1/k

≤ c .

Similar to global results for Newton’s method.
Reflects practice reported by Kudin et al.
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EDIIS

Example

Example from Radiative Transfer

Chandrasekhar H-equation

H(µ) = G (H) ≡
(

1− ω

2

∫ 1

0

µ

µ+ ν
H(ν) dν.

)−1
ω ∈ [0, 1] is a physical parameter.
F ′(H∗) is singular when ω = 1.

ρ(G ′(H∗)) ≤ 1−
√

1− ω < 1
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EDIIS

Example

Numerical Experiments

Discretize with 500 point composite midpoint rule.

Compare EDIIS/Anderson/Optimization problem methods

Matlab lsqlin active set (Golub-Saunders 1969)
Matlab lsqlin interior point (Coleman-Li 1994)

Terminate when ‖F (uk)‖2/‖F (u0)‖2 ≤ 10−8

ω = .5
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EDIIS

Example

Table and Figure

Tabulate

Computed convergence rate at terminal iteration k(‖F(hk)‖
‖F(h0)‖

)1/k

Spectral radius ρ(G′(H∗))

Plot: residiual histories
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EDIIS

Example

Convergence Rates

Anderson Picard EDIIS-A EDIIS-I ρ(G(H∗))

1.06e-02 1.72e-01 1.72e-01 3.14e-01 2.93e-01

Why is Picard so good? There’s theory.

Why is Anderson so good? There’s no theory.
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EDIIS

Example

Residual Histories

0 5 10 15 20

iterations

10
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EDIIS

Some Proofs

Nonlinear Theory: No smoothness! m = 1, `2 norm

Assumptions: m = 1

There is u∗ ∈ RN such that F(u∗) = G(u∗)− u∗ = 0.

‖G(u)− G(v)‖ ≤ c‖u− v‖ for u, v near u∗.

Words: G has a fixed point and is a contraction.
We can do prove something without assuming differntiability . . .
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EDIIS

Some Proofs

Nonlinear Theory: No smoothness! m = 1, `2 norm

Convergence for Anderson(1) with `2 optimization

Let c be small enough so that

ĉ ≡ 3c − c2

1− c
< 1.

Let c < ĉ < 1 Anderson(1) converges and

‖F(uk+1)‖2 ≤ ĉ‖F(uk)‖2
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Proof I

If m = 1 then

uk+1 = (1− αk)G(uk) + αkG(uk−1),

where

αk =
F(uk)T (F(uk)− F(uk−1))

‖F(uk)− F(uk−1)‖2
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Proof II

Write
F(uk+1) = G(uk+1)− uk+1 = Ak + Bk ,

where
Ak = G(uk+1)− G((1− αk)uk + αkuk−1)

and
Bk = G((1− αk)uk + αkuk−1)− uk+1.

We will estimate Ak and Bk separately to prove the estimate.
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Proof III: Estimation of ‖Ak‖

‖Ak‖ = ‖G(uk+1)− G((1− αk)uk + αkuk−1)‖

≤ c‖uk+1 − (1− αk)uk − αkuk−1‖

= c‖(1− αk)(G(uk)− uk)− αk(G(uk−1)− uk−1)‖

= c‖(1− αk)F(uk)− αkF(uk−1)‖ ≤ c‖F(uk)‖,

The last inequality follows from optimality of the coefficients.
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Proof IV: Estimation of ‖Bk‖

To begin

Bk = G((1− αk)uk + αkuk−1)− (1− αk)G(uk)− αkG(uk−1)

= G(uk + αkδk)− G(uk) + αk(G(uk)− G(uk−1))

Using contractivity

‖Bk‖ ≤ 2c |αk | ‖δk‖.

Next, estimate the product |αk |‖δk‖.
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Proof VI: Estimation of ‖Bk‖

The difference in residuals is

F(uk)− F(uk−1) = G(uk)− G(uk−1) + δk .

Using contractivity ‖G(uk)− G(uk−1)‖ ≤ c‖δk‖ we obtain

‖F(uk)− F(uk−1)‖ ≥ (1− c)‖δk‖.

Hence
‖δk‖ ≤ ‖F(uk)− F(uk−1)‖/(1− c).
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Proof VII: Final result

Finally, use the formula for αk to obtain

|αk |‖δk‖ ≤
‖F(uk)‖

‖F(uk)− F(uk−1)‖‖δk‖ ≤
‖F(uk)‖

1− c
.

So
‖F(uk+1)‖ ≤ c‖F(uk)‖+ 2c‖F(uk )‖

1−c

= 3c−c2
1−c ‖F(uk)‖ = ĉ‖F(uk)‖.
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Smooth Case

Assume that G′ is Lipschitz continuous. Then if ‖e0‖ is sufficiently
small Anderson(1) converges and

lim sup
k→∞

‖F(uk+1)‖2
‖F(uk)‖2

≤ c .
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Proof I: Exploiting smoothness

The only difference is the estimate for Bk . Using the
differentiability assumption

Bk = G((1− αk)uk + αkuk−1)− (1− αk)G(uk)− αkG(uk−1)

= G(uk + αkδk)− G(uk) + αk(G(uk)− G(uk−1))

=
∫ 1
0 G′(uk + tαkδk)αkδk dt − αk

∫ 1
0 G′(uk + tδk)δk dt

= αk
∫ 1
0

[
G′(uk + tαkδk)− G′(uk + tδk)

]
δk dt.
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Proof II: Lipschitz continuity of G′

So, if γ is the Lipschitz constant of G′,

‖Bk‖ ≤ γ|αk ||(1− αk)|‖δk‖2/2.

By definition,

|αk ||1− αk | ≤ ‖F(uk)‖‖F(uk−1)‖
‖F(uk)− F(uk−1)‖2 .

Contractivity implies that

‖F(uk)− F(uk−1)‖ ≥ (1− c)‖δk‖

So . . .
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Proof III: Final estimate

‖F(uk+1)‖ ≤ ‖Ak‖+ ‖Bk‖

≤ c‖F(uk)‖+
γ‖F(uk )‖‖F(uk−1)‖

2(1−c)2

= ‖F(uk)‖(c + O(‖F(uk−1)‖))

proving the result if e0 is sufficiently small.
Can we use semi-smoothness to do this?
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What do we need to get . . .

Bk = G((1− αk)uk + αkuk−1)− (1− αk)G(uk)− αkG(uk−1)

= G(uk + αkδk)− G(uk) + αk(G(uk)− G(uk−1))

= o(‖F(uk)‖)?

Continuity of G′ is enough.

C. T. Kelley EDIIS CityU, May 2018 55 / 58



EDIIS

Some Proofs

Exploit smoothness

References

D. G. Anderson,
Iterative Procedures for Nonlinear Integral Equations, Journal of the
ACM, 12 (1965), pp. 547–560.

P. Pulay,
Convergence acceleration of iterative sequences. The case of SCF iteration.,
Chemical Physics Letters, 73 (1980), pp. 393–398.

K. N. Kudin, G. E. Scuseria, and E. Cancès,
A black-box self-consistent field convergence algorithm: One step closer,
Journal of Chemical Physics, 116 (2002), pp. 8255–8261,

C. T. Kelley EDIIS CityU, May 2018 56 / 58



EDIIS

Some Proofs

Exploit smoothness

References

A. Toth and C. T. Kelley, Convergence analysis for Anderson
acceleration, SIAM J. Numer. Anal., 53 (2015), pp. 805 – 819.

A. Toth, J. A. Ellis, T. Evans, S. Hamilton, C. T.
Kelley, R. Pawlowski, and S. Slattery, Local improvement
results for Anderson acceleration with inaccurate function
evaluations, 2016. To appear in SISC.

S. Hamilton, M. Berrill, K. Clarno, R. Pawlowski,
A. Toth, C. T. Kelley, T. Evans, and B. Philip, An
assessment of coupling algorithms for nuclear reactor core physics
simulations, Journal of Computational Physics, 311 (2016),
pp. 241–257.

X. Chen, C. T. Kelley, and players to be named,
Analysis and Implementation of EDIIS, in progress.

C. T. Kelley EDIIS CityU, May 2018 57 / 58



EDIIS

Summary

Summary

Proofs use derivatives

Can semi-smooth analysis do the job?

EDIIS has a harder optimization problem
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