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Newton’s Method

Newton’s Method

Notation

Objective: find a solution of

F (u) = 0

where F : RN → RN .
We write F = (f1, . . . , fN)T . The Jacobian matrix F ′ is

(F ′)ij = ∂fi/∂uj
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Newton’s Method

Newton’s Method

Transition from current point uc to new one u+.

u+ = uc − F ′(uc)−1F (uc).

Interpretation: u+ is the root of the local linear model at uc

Lc(u) = F (uc) + F ′(uc)(u − uc)
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Newton’s Method

Convergence Theory for Exact Linear Solves

Standard Assumptions (SA):

F (u∗) = 0

F ′(u∗) is nonsingular.

F ′(u) is Lipschitz continuous with Lipschitz constant γ

‖F ′(u)− F ′(u′)‖ ≤ γ‖u − u′‖
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Newton’s Method

Convergence Theory: I

Theorem: SA + Good Data (‖e0‖ small) implies that

‖e+‖ = O(‖ec‖2).

Here e = u − u∗.
So the iteration converges.
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Newton’s Method

Errors in Function and Jacobian

Theorem: SA + Good Data + Small Perturbations imply that if

u+ = uc + s

‖(F ′(uc) + ∆(uc))−1s + (F (uc) + ε(uc))‖ ≤ ηc‖(F (uc) + ε(uc))‖

then

‖e+‖ = O(‖ec‖2 + (‖∆(uc)‖+ ηc)‖ec‖+ ‖ε(uc)‖).

So the iteration converges up to the resolution of the residual F .
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Newton’s Method

The problem here is different

Evaluations of F , F ′, . . . have Monte Carlo (MC) components, so

You have a variance estimate, but . . .

No bounds on errors in functions/Jacobians

Severe error accumulation in methods like matrix-free
Newton-GMRES
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Newton-MC

MC-based Data for Newton: Notation

NMC (NJ
MC ) is the number of trails for the function (Jacobian

or Jacobian-vector product).

F̃ (u,NMC ) an outcome for the residual F (u).

J(u,NJ
MC ) an outcome for the Jacobian F ′(u).

Jp(u, v ,NJ
MC ) an outcome for the product F ′(u)v .
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Newton-MC

Consistency: Matrix-Based Methods

There are functions cF and cJ such that for δ > 0

Prob

(
‖F (u)− F̃ (u,NMC )‖ > cF (δ)√

NMC

)
< δ,

and

Prob

‖F ′(u)− J(u,NJ
MC )‖ > cJ(δ)√

NJ
MC

 < δ.
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Newton-MC

Algorithmic Idea

Increase NMC as the iteration progresses
to refine quality of solution.

Leave NJ
MC alone.

Speedup in nonlinear iteration not worth it.

Will this iteration converge?

Probably!
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Newton-MC

Newton-MC Algorithm

Newton-MC(u,NMC ,N
J
MC ,Ninc , η, τr , τa)

Evaluate RMC = F̃ (u,NMC ); τ ← τr‖RMC‖+ τa.
while ‖RMC‖ > τ do

Compute J(u,NJ
MC )

Find s which satisfies
‖J(u,NJ

MC )s + F̃ (u,NMC )‖ ≤ η‖F̃ (u,NMC )‖.
u ← u + s
Evaluate RMC = F̃ (u,NMC );
NMC ← NincNMC

end while
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Newton’s Method

Newton-MC

Tracking Theorem: Assumptions

Standard Assumptions for Newton

Exact (no MC) Newton iteration {xNn }
Initial iterate good enough and η small enough so that
‖eNn+1‖ ≤ rN‖eNn ‖

We do not try to drive ηn → 0. Not practical with an MC-based
residual.
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Newton-MC

Tracking Theorem

Given integer K , ω ∈ (0, 1), and r ∈ (rN , 1), there are NMC , NJ
MC ,

and Ninc , such that with probability (1− ω) for all 1 ≤ n ≤ K , the
iteration produced by Algorithm Newton-MC satisfies

‖en‖ ≤ rn‖e0‖,

and there is KF (depending only on F and u∗) such that

‖F (un)‖ ≤ KF r
n‖F (u0)‖.
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Newton-MC

Tracking is not Convergence

You only see a high probability of error/residual reduction,

and only for a fixed (K ) number of iterations.

You have to manage NMC to get even that.

And it gets stranger . . .
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JFNK-MC

Consistency: Matrix-Free Krylov Methods

Residual Consistency

Prob

(
‖F (u)− F̃ (u,NMC )‖ > cF (δ)√

NMC

)
< δ,

plus

Prob

‖F ′(u)v − Jp(u, v ,NJ
MC )‖ > cJv (δ)√

NJ
MC

 < δ.
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JFNK-MC

Bad Idea for Algorithm

Terminate inner iteration when the Monte Carlo Inexact Newton
Condition (INC-MC) holds:

‖Jp(u, s,NJ
MC ) + F̃ (uc ,NMC )‖ ≤ η‖F̃ (uc ,NMC )‖,

and obtain a nice tracking theorem.
Just like normal inexact Newton. What could go wrong?
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JFNK-MC

But there’s a problem

You call the mat-vec with every Krylov iteration.
There is no Jacobian behind that mat-vec.

The accuracy is low.

Errors accumulate rapidly.

This is a big deal (Simoncini-Szyld 03–07)

Their solution: very high accuracy for early Krylovs
We can’t do that; MC simulation too costly.

One solution: Take Youngman’s Method, please.
Doctor, it hurts when I take too many Krylovs.
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JFNK-MC

So don’t take too many Krylovs!

H. Youngman
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JFNK-MC

Limitations of Youngman’s Method

Need a good preconditioner → low Krylov count is ok.

You don’t know how low, in general.
Our example has the compactness properties you want.

Must impose a hard limit on Krylov count and hope it’s
enough.

Theory is cleanest with GMRES as the Krylov solver.
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JFNK-MC

Jacobian-Free Newton-Krylov-MC (JFNK-MC)

JFNK-MC(u,NMC ,N
J
MC ,Ninc , η,KL,KR , τr , τa)

Evaluate RMC = F̃ (u,NMC ); τ ← τr‖RMC‖+ τa.
while ‖RMC‖ > τ do

Use GMRES(KL) with at most KR − 1 restarts to find s.
Terminate the Krylov iteration when INC-MC holds or after
KL × KR linear iterations.
u ← u + s
NMC ← Ninc ∗ NMC ;
Evaluate RMC = F̃ (u,NMC )

end while
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Newton’s Method

JFNK-MC

Tracking Theorem for JFNK-MC

Assumptions:

Assumptions for first tracking theorem, PLUS

At most KL Krylovs needed to get INC for exact iteration.

No breakdown (premature termination) in GMRES iteration.

Conclusion: Same.
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Neutron Transport Equation

Region of Interest: Heterogeneous

From CASL Image Gallery
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Neutron Transport Equation

Neutron Transport Equation: Ia

Notation:

D ⊂ R3, r = (x , y , z)T ∈ D

Ω̂ ∈ S2

ψ(r ,E , Ω̂) angular flux of Neutrons at

space: location r
momentum: direction Ω̂ and energy E ≥ 0

Boundary conditions on incoming flux.
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Neutron Transport Equation

Neutron Transport Equation: Ib

This is a high-dimensional problem:

One space dimension is 3D (space+direction+energy)

Two space dimensions is 5D (space+ 2 × direction + energy)

Three space dimensions is 6D (space+2 × direction+energy)

Why does one space dimension lead to a continuum of directions?
Stay tuned.
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Neutron Transport Equation

MC vs Deterministic

Solutions in 3D are non-smooth

Fine grids (in 6D!) are needed to resolve the solution.
Angular grids produce artifacts in vacuum regions.
Poorly scaled problems (shielding) can’t be done well at all.

MC addresses these things, but . . .

MC is slow
MC needs tuning for do its best.

Hybrid methods seem to solve some of the problems.
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Neutron Transport Equation

Neutron Transport Equation: II

Simplifications: round 1

No time dependence.
Solve time-independent problems to integrate in time.

Neglect fission sources.
Methods don’t change much if we put them in.

C. T. Kelley Newton’s Method CUNY: New York, 2013 28 / 43



Newton’s Method

Neutron Transport Equation

Neutron Transport Equation: III

Ω̂ · ∇ψ(r ,E , Ω̂) + Σt(r ,E )ψ(r ,E , Ω̂)

= 1
4π

∫
S2 dΩ̂′

∫∞
0 dE ′Σs(r ,E ′ → E , Ω̂′ → Ω̂)ψ(r ,E ′, Ω̂′)

+q(r ,E , Ω̂)/4π,

Quantity of interest: scalar flux

φ(r ,E ) =

∫
S2

ψ(r ,E , Ω̂′)dΩ̂′
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Neutron Transport Equation

Neutron Transport Equation: III

Σt and Σs are transmission and scattering cross sections.
They are ugly!

From CASL Image Gallery
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Neutron Transport Equation

Solution Methods: two of many

SN : Faster and easier to analyze

quadrature in angle,
differences/elements/volumes in space,
piecewise constant in Energy (multi-group approximation).
Yet another problem with deterministic computing.
Solve with standard linear (or nonlinear!!) solvers.

Monte-Carlo (MC): Slower with better results

No meshes in angle/energy
Neutron ensemble randomly scatters via scattering/energy
cross sections
Accumulate fluxes (and other angular moments) at the end.

C. T. Kelley Newton’s Method CUNY: New York, 2013 31 / 43



Newton’s Method

Neutron Transport Equation

More Simplification

This is too much, so we simplify again to

Monoenergetic (no E )

Isotropic (no Ω̂′ → Ω̂)

One space dimension

You can learn a lot from even this simple case.
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Neutron Transport Equation

Transport Equation in 1-D

µ
∂ψ

∂x
(x , µ) + ψ(x , µ) =

c(x)

2

∫ 1

−1
ψ(x , µ′) dµ′ + q(x)/2,

Boundary Conditions:

ψ(0, µ) = ψl(µ), µ > 0;ψ(τ, µ) = ψr (µ), µ < 0.
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Neutron Transport Equation

µ = cos(θ)
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Neutron Transport Equation

Nonlinear Diffusion Acceleration (NDA): Step 1

Nonlinear compact fixed point problem for φ.
Transport sweep: Given input φLO , solve the high-order problem

µ
∂ψ

∂x
(x , µ) + ψ(x , µ) =

c(x)

2
φLO(x) + q(x)/2

Then compute the high-order flux

φHO(x) =

∫ 1

−1
ψ(x , µ′) dµ′

and current

JHO(x) =

∫ 1

−1
µ′ψ(x , µ′) dµ′ ≡ M1ψ

computing ψ only once for both
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Neutron Transport Equation

Nonlinear Diffusion Acceleration (NDA): Step 2

Define

D̂ =
JHO + 1

3
dφHO

dx

φHO
.

The low-order nonlinear equation for φLO is F(φLO) = 0, where

F(φ) =
d

dx

[
−1

3

dφ

dx

]
+ (1− c)φ+

d

dx

[
D̂(φHO , JHO)φ

]
with boundary conditions φLO = φHO .
Equivalent to original formulation!
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Neutron Transport Equation

Preconditioner

Preconditioner inverts

Lw =
d

dx

[
−1

3

dw

dx

]
+ (1− c)w + D̂(φHO , JHO)

dw

dx

with correct boundary conditions to solve linearized problem for
the Newton step.
This linearized problem is a compact fixed point problem.
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Neutron Transport Equation

NDA Hybrid Method

Solve the high-order problem with Monte Carlo for φ and J

better results + higher cost
BUT we are asking MC to solve a fixed source problem
no scattering is good + GPU Friendly.

Solve the low-order problem in a standard way

Resolve a few details
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Neutron Transport Equation

Analytic Jacobian-Vector Product

If we plan to replace the transport sweep with a MC simulation,
then

A finite difference Jacobian is a problem

Accuracy is roughly square root of function accuracy at best
MC accuracy will be low and expressed probabilistically

So the only hope for us is an analytic Jacobian-vector product:

chain rule + linear dependence of φHO and JHO on φLO .
cost of mat-vec is one extra MC transport sweep.
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Results

Example

Physical parameters:

c = .99; τ = 10; q = .5;

Old Way: Beat GMRES to death and

NMC = 106, 108, 1010

New Way:
NMC ← NMC/2

with each iteration

C. T. Kelley Newton’s Method CUNY: New York, 2013 40 / 43



Newton’s Method

Results

Iteration History: Old Way
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Results

Iteration History: New Way KL = 10,KR = 1, η = .01
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Conclusions

Conclusions

Tracking theorems for Newton-MC

Watch out for linear solver errors

Examples from neutronics simulations
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