Newton's Method for Monte-Carlo Based Residuals

C. T. Kelley NC State University tim_kelley@ncsu.edu Joint with Jeff Willert, Dana Knoll, Ryosuke Park, Xiaojun Chen Supported by CASL, LANL, ARO, NSF

CUNY, New York, April 25, 2013

Outline

- 2 Newton's Method
- 3 Newton-MC
- 4 JFNK-MC
- 5 Neutron Transport Equation
- 6 Results
- 7 Conclusions

- Jeff Willert, NCSU
- Dana Knoll, Ryosuke Park, LANL
- Xiaojun Chen, Hong Kong Poly

Objective: find a solution of

$$F(u) = 0$$

where $F : \mathbb{R}^N \to \mathbb{R}^N$. We write $F = (f_1, \dots, f_N)^T$. The <u>Jacobian matrix</u> F' is

$$(F')_{ij} = \partial f_i / \partial u_j$$

Newton's Method

Transition from current point u_c to new one u_+ .

$$u_+ = u_c - F'(u_c)^{-1}F(u_c).$$

Interpretation: u_+ is the root of the local linear model at u_c

$$L_c(u) = F(u_c) + F'(u_c)(u - u_c)$$

Convergence Theory for Exact Linear Solves

Standard Assumptions (SA):

- $F(u^*) = 0$
- $F'(u^*)$ is nonsingular.
- F'(u) is Lipschitz continuous with Lipschitz constant γ

$$\|F'(u)-F'(u')\|\leq \gamma\|u-u'\|$$

Convergence Theory: I

Theorem: SA + Good Data ($||e_0||$ small) implies that

$$\|e_+\| = O(\|e_c\|^2).$$

Here $e = u - u^*$. So the iteration converges.

Errors in Function and Jacobian

Theorem: SA + Good Data + Small Perturbations imply that if

 $u_+ = u_c + s$

$$\|(F'(u_c) + \Delta(u_c))^{-1}s + (F(u_c) + \epsilon(u_c))\| \le \eta_c \|(F(u_c) + \epsilon(u_c))\|$$

then

$$\|e_+\| = O(\|e_c\|^2 + (\|\Delta(u_c)\| + \eta_c)\|e_c\| + \|\epsilon(u_c)\|).$$

So the iteration converges up to the resolution of the residual F.

The problem here is different

Evaluations of F, F', \ldots have Monte Carlo (MC) components, so

- You have a variance estimate, but ...
- No bounds on errors in functions/Jacobians
- Severe error accumulation in methods like matrix-free Newton-GMRES

MC-based Data for Newton: Notation

- N_{MC} (N_{MC}^{J}) is the number of trails for the function (Jacobian or Jacobian-vector product).
- $\tilde{F}(u, N_{MC})$ an outcome for the residual F(u).
- $J(u, N_{MC}^J)$ an outcome for the Jacobian F'(u).
- $J_p(u, v, N_{MC}^J)$ an outcome for the product F'(u)v.

Consistency: Matrix-Based Methods

There are functions c_F and c_J such that for $\delta > 0$

$$Prob\left(\|F(u) - \tilde{F}(u, N_{MC})\| > \frac{c_F(\delta)}{\sqrt{N_{MC}}}\right) < \delta,$$

and

$$Prob\left(\|F'(u)-J(u,N_{MC}^{J})\|>rac{c_{J}(\delta)}{\sqrt{N_{MC}^{J}}}
ight)<\delta.$$

- Increase N_{MC} as the iteration progresses to refine quality of solution.
- Leave N^J_{MC} alone.
 Speedup in nonlinear iteration not worth it.
- Will this iteration converge?

- Increase N_{MC} as the iteration progresses to refine quality of solution.
- Leave N^J_{MC} alone.
 Speedup in nonlinear iteration not worth it.

Will this iteration converge? Probably!

Newton-MC Algorithm

Newton-MC $(u, N_{MC}, N_{MC}^J, N_{inc}, \eta, \tau_r, \tau_a)$ Evaluate $R_{MC} = \tilde{F}(u, N_{MC}); \tau \leftarrow \tau_r \|R_{MC}\| + \tau_2$. while $||R_{MC}|| > \tau$ do Compute $J(u, N_{MC}^{J})$ Find s which satisfies $||J(u, N_{MC}^{J})s + \tilde{F}(u, N_{MC})|| < \eta ||\tilde{F}(u, N_{MC})||.$ $\mu \leftarrow \mu + s$ Evaluate $R_{MC} = \tilde{F}(u, N_{MC})$; $N_{MC} \leftarrow N_{inc} N_{MC}$ end while

Tracking Theorem: Assumptions

- Standard Assumptions for Newton
- Exact (no MC) Newton iteration $\{x_n^N\}$
- Initial iterate good enough and η small enough so that $\|e_{n+1}^N\| \le r_N \|e_n^N\|$

We do not try to drive $\eta_n \rightarrow 0$. Not practical with an MC-based residual.

Tracking Theorem

Given integer K, $\omega \in (0, 1)$, and $r \in (r_N, 1)$, there are N_{MC} , N_{MC}^J , and N_{inc} , such that with probability $(1 - \omega)$ for all $1 \le n \le K$, the iteration produced by Algorithm **Newton-MC** satisfies

$$\|e_n\|\leq r^n\|e_0\|,$$

and there is K_F (depending only on F and u^*) such that

$$||F(u_n)|| \leq K_F r^n ||F(u_0)||.$$

- You only see a high probability of error/residual reduction,
- and only for a fixed (K) number of iterations.
- You have to manage N_{MC} to get even that.

And it gets stranger . . .

Consistency: Matrix-Free Krylov Methods

Residual Consistency

$$Prob\left(\|F(u) - \tilde{F}(u, N_{MC})\| > \frac{c_F(\delta)}{\sqrt{N_{MC}}}\right) < \delta,$$

plus

$$Prob\left(\|F'(u)v - J_{\rho}(u, v, N_{MC}^{J})\| > \frac{c_{Jv}(\delta)}{\sqrt{N_{MC}^{J}}}\right) < \delta.$$

э

-JFNK-MC

Bad Idea for Algorithm

Terminate inner iteration when the Monte Carlo Inexact Newton Condition (INC-MC) holds:

$$\|J_{p}(u,s,N_{MC}^{J})+\tilde{F}(u_{c},N_{MC})\|\leq \eta\|\tilde{F}(u_{c},N_{MC})\|,$$

and obtain a nice tracking theorem. Just like normal inexact Newton. What could go wrong?

- You call the mat-vec with every Krylov iteration. There is no Jacobian behind that mat-vec.
- The accuracy is low.
- Errors accumulate rapidly.
- This is a big deal (Simoncini-Szyld 03–07)
 - Their solution: very high accuracy for early Krylovs
 - We can't do that; MC simulation too costly.

-JFNK-MC

But there's a problem

- You call the mat-vec with every Krylov iteration. There is no Jacobian behind that mat-vec.
- The accuracy is low.
- Errors accumulate rapidly.
- This is a big deal (Simoncini-Szyld 03–07)
 - Their solution: very high accuracy for early Krylovs
 - We can't do that; MC simulation too costly.

One solution:

- You call the mat-vec with every Krylov iteration. There is no Jacobian behind that mat-vec.
- The accuracy is low.
- Errors accumulate rapidly.
- This is a big deal (Simoncini-Szyld 03–07)
 - Their solution: very high accuracy for early Krylovs
 - We can't do that; MC simulation too costly.
- One solution: Take Youngman's Method,

- You call the mat-vec with every Krylov iteration. There is no Jacobian behind that mat-vec.
- The accuracy is low.
- Errors accumulate rapidly.
- This is a big deal (Simoncini-Szyld 03–07)
 - Their solution: very high accuracy for early Krylovs
 - We can't do that; MC simulation too costly.
- One solution: Take Youngman's Method, please.

- You call the mat-vec with every Krylov iteration. There is no Jacobian behind that mat-vec.
- The accuracy is low.
- Errors accumulate rapidly.
- This is a big deal (Simoncini-Szyld 03–07)
 - Their solution: very high accuracy for early Krylovs
 - We can't do that; MC simulation too costly.
- One solution: Take Youngman's Method, please. Doctor, it hurts when I take too many Krylovs.

JENK-MC

So don't take too many Krylovs!

H. Youngman

0	_	Kel	lov
С.		nei	iey

Newton's Method

CUNY: New York, 2013 20 / 43

-JFNK-MC

Limitations of Youngman's Method

- \blacksquare Need a good preconditioner \rightarrow low Krylov count is ok.
 - You don't know how low, in general.
 - Our example has the compactness properties you want.
- Must impose a hard limit on Krylov count and hope it's enough.
- Theory is cleanest with GMRES as the Krylov solver.

Jacobian-Free Newton-Krylov-MC (JFNK-MC)

$$JFNK-MC(u, N_{MC}, N_{MC}^J, N_{inc}, \eta, K_L, K_R, \tau_r, \tau_a)$$

Evaluate $R_{MC} = \tilde{F}(u, N_{MC}); \tau \leftarrow \tau_r ||R_{MC}|| + \tau_a$. while $||R_{MC}|| > \tau$ do Use GMRES(K_L) with at most $K_R - 1$ restarts to find s. Terminate the Krylov iteration when INC-MC holds or after $K_L \times K_R$ linear iterations. $u \leftarrow u + s$ $N_{MC} \leftarrow N_{inc} * N_{MC};$ Evaluate $R_{MC} = \tilde{F}(u, N_{MC})$

end while

-JFNK-MC

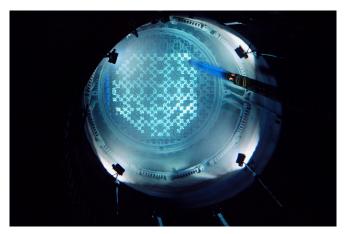
Tracking Theorem for JFNK-MC

Assumptions:

- Assumptions for first tracking theorem, PLUS
- At most K_L Krylovs needed to get INC for exact iteration.

No breakdown (premature termination) in GMRES iteration.
 Conclusion: Same.

Region of Interest: Heterogeneous



From CASL Image Gallery

C. T. Kelley

Neutron Transport Equation: la

Notation:

$$D \subset R^3, r = (x, y, z)^T \in D$$

•
$$\Omega \in S^2$$

•
$$\psi(\mathbf{r}, \mathbf{E}, \hat{\Omega})$$
 angular flux of Neutrons at

- space: location r
- momentum: direction $\hat{\Omega}$ and energy $E \ge 0$

Boundary conditions on incoming flux.

Neutron Transport Equation: Ib

This is a high-dimensional problem:

- One space dimension is 3D (space+direction+energy)
- Two space dimensions is 5D (space+ 2 × direction + energy)

Three space dimensions is 6D (space+2 × direction+energy)
 Why does one space dimension lead to a continuum of directions?
 Stay tuned.

MC vs Deterministic

Solutions in 3D are non-smooth

- Fine grids (in 6D!) are needed to resolve the solution.
- Angular grids produce artifacts in vacuum regions.
- Poorly scaled problems (shielding) can't be done well at all.
- MC addresses these things, but ...
 - MC is slow
 - MC needs tuning for do its best.
- Hybrid methods seem to solve some of the problems.

Neutron Transport Equation: II

Simplifications: round 1

- No time dependence.
 Solve time-independent problems to integrate in time.
- Neglect fission sources.

Methods don't change much if we put them in.

Neutron Transport Equation: III

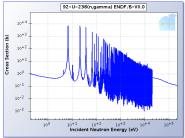
$$\begin{split} \hat{\Omega} \cdot \nabla \psi(r, E, \hat{\Omega}) + \Sigma_t(r, E) \psi(r, E, \hat{\Omega}) \\ &= \frac{1}{4\pi} \int_{S^2} d\hat{\Omega}' \int_0^\infty dE' \Sigma_s(r, E' \to E, \hat{\Omega}' \to \hat{\Omega}) \psi(r, E', \hat{\Omega}') \\ &+ q(r, E, \hat{\Omega}) / 4\pi, \end{split}$$

Quantity of interest: scalar flux

$$\phi(\mathbf{r}, \mathbf{E}) = \int_{S^2} \psi(\mathbf{r}, \mathbf{E}, \hat{\Omega}') d\hat{\Omega}'$$

Neutron Transport Equation: III

 Σ_t and Σ_s are transmission and scattering cross sections. They are ugly!



From CASL Image Gallery

Solution Methods: two of many

• S^N : Faster and easier to analyze

- quadrature in angle,
- differences/elements/volumes in space,
- piecewise constant in Energy (multi-group approximation).
 Yet another problem with deterministic computing.
- Solve with standard linear (or nonlinear!!) solvers.
- Monte-Carlo (MC): Slower with better results
 - No meshes in angle/energy
 - Neutron ensemble randomly scatters via scattering/energy cross sections
 - Accumulate fluxes (and other angular moments) at the end.

More Simplification

This is too much, so we simplify again to

- Monoenergetic (no E)
- Isotropic (no $\hat{\Omega}' \rightarrow \hat{\Omega}$)
- One space dimension

You can learn a lot from even this simple case.

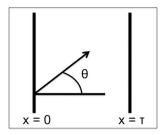
Transport Equation in 1-D

$$\mu \frac{\partial \psi}{\partial x}(x,\mu) + \psi(x,\mu) = \frac{c(x)}{2} \int_{-1}^{1} \psi(x,\mu') \, d\mu' + q(x)/2,$$

Boundary Conditions:

$$\psi(\mathsf{0},\mu)=\psi_l(\mu),\mu>\mathsf{0}; \psi(\tau,\mu)=\psi_r(\mu),\mu<\mathsf{0}.$$

$$\mu = \cos(\theta)$$



э.

・ロト ・回ト ・ヨト ・ヨト

Nonlinear Diffusion Acceleration (NDA): Step 1

Nonlinear compact fixed point problem for ϕ . Transport sweep: Given input ϕ^{LO} , solve the high-order problem

$$\mu rac{\partial \psi}{\partial x}(x,\mu) + \psi(x,\mu) = rac{c(x)}{2} \phi^{LO}(x) + q(x)/2$$

Then compute the high-order flux

$$\phi^{HO}(x)=\int_{-1}^1\psi(x,\mu')\,d\mu'$$

and current

$$J^{HO}(x) = \int_{-1}^1 \mu' \psi(x,\mu') \, d\mu' \equiv M_1 \psi$$

computing ψ only once for both

C. T. Kelley

Nonlinear Diffusion Acceleration (NDA): Step 2

Define

$$\hat{D} = \frac{J^{HO} + \frac{1}{3} \frac{d\phi^{HO}}{dx}}{\phi^{HO}}.$$

The low-order nonlinear equation for ϕ^{LO} is $\mathcal{F}(\phi^{LO}) = 0$, where

$$\mathcal{F}(\phi) = rac{d}{dx} \left[rac{-1}{3} rac{d\phi}{dx}
ight] + (1-c) \phi + rac{d}{dx} \left[\hat{D}(\phi^{HO}, J^{HO}) \phi
ight]$$

with boundary conditions $\phi^{LO} = \phi^{HO}$. Equivalent to original formulation!

Preconditioner inverts

$$Lw = \frac{d}{dx} \left[\frac{-1}{3} \frac{dw}{dx} \right] + (1 - c) w + \hat{D}(\phi^{HO}, J^{HO}) \frac{dw}{dx}$$

with correct boundary conditions to solve linearized problem for the Newton step.

This linearized problem is a compact fixed point problem.

NDA Hybrid Method

Solve the high-order problem with Monte Carlo for ϕ and J

- better results + higher cost
- BUT we are asking MC to solve a fixed source problem no scattering is good + GPU Friendly.
- Solve the low-order problem in a standard way
- Resolve a few details

Analytic Jacobian-Vector Product

If we plan to replace the transport sweep with a MC simulation, then

- A finite difference Jacobian is a problem
 - Accuracy is roughly square root of function accuracy at best
 - MC accuracy will be low and expressed probabilistically
- So the only hope for us is an analytic Jacobian-vector product:
 - chain rule + linear dependence of ϕ^{HO} and J^{HO} on ϕ^{LO} .
 - cost of mat-vec is one extra MC transport sweep.

Newton's Method			
- Results			

Physical parameters:

$$c = .99; \tau = 10; q = .5;$$

Old Way: Beat GMRES to death and

$$N_{MC} = 10^6, 10^8, 10^{10}$$

New Way:

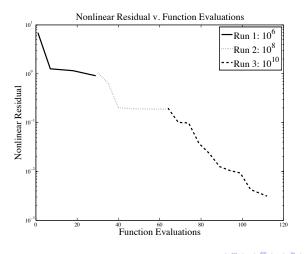
$$N_{MC} \leftarrow N_{MC}/2$$

with each iteration

э

-Results

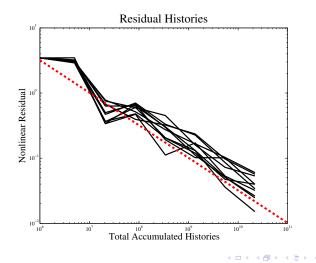
Iteration History: Old Way



C. T. Kelley

- Results

Iteration History: New Way $K_L = 10, K_R = 1, \eta = .01$



C. T. Kelley

- Tracking theorems for Newton-MC
- Watch out for linear solver errors
- Examples from neutronics simulations