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Newton’s Method
L Newton’s Method
Notation

Objective: find a solution of
F(u)=0

where F : RN — RN,
We write F = (f1,...,fy)". The Jacobian matrix F’ is

(F)ij = 0f;/du;
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Newton’s Method
L Newton’s Method
Newton's Method

Transition from current point u. to new one u;.
-1
uy = ue — F'(ue)  F(ue).

Interpretation: wuy is the root of the local linear model at u,

Le(u) = F(ue) + F'(uc)(u — uc)
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Newton’s Method
LNewton’s Method
Convergence Theory for Exact Linear Solves

Standard Assumptions (SA):
m F(u*)=0

m F'(u*) is nonsingular.

m F’'(u) is Lipschitz continuous with Lipschitz constant ~y

IF"(u) = F'(W)I < yllu = o]
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Newton’s Method
LNewton’s Method
Convergence Theory: |

Theorem: SA + Good Data (||eg|| small) implies that

lexll = OCllec?).

Here e = u — u*.
So the iteration converges.
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Newton’s Method
LNewton’s Method
Errors in Function and Jacobian

Theorem: SA + Good Data 4+ Small Perturbations imply that if
Uy = Uc+s

I(F"(ue) + A(ue)) s + (F(ue) + e(ue)) || < nell(F(ue) + e(ue))
then

lell = O(llecl® + (A(ue) | +ne)llecl + lleuc)1)-

So the iteration converges up to the resolution of the residual F.
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Newton’s Method
LNewton’s Method
The problem here is different

Evaluations of F, F’, ... have Monte Carlo (MC) components, so
m You have a variance estimate, but . ..
m No bounds on errors in functions/Jacobians

m Severe error accumulation in methods like matrix-free
Newton-GMRES
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Newton’s Method
LNewtonvMC
MC-based Data for Newton: Notation

m Nyc (Ni;c) is the number of trails for the function (Jacobian
or Jacobian-vector product).

m F(u, Nyc) an outcome for the residual F(u).
m J(u, Ni,c) an outcome for the Jacobian F'(u).
m Jp(u, v, Ni;c) an outcome for the product F’(u)v.
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Newton’s Method
L Newton-MC

Consistency: Matrix-Based Methods

There are functions cg and ¢, such that for § > 0

2 cr(9)
Prob <||F(u) — F(u, Nye)|| > \/W) <6,

and

CJ(5)

J
NMC

Prob | ||F'(u) — J(u, N3,o)|| > < 4.
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Newton’s Method
L Newton-MC

Algorithmic ldea

m Increase Ny c as the iteration progresses
to refine quality of solution.

m Leave N,{M alone.
Speedup in nonlinear iteration not worth it.

Will this iteration converge?
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Newton’s Method
L Newton-MC
Algorithmic ldea

m Increase Ny c as the iteration progresses
to refine quality of solution.

m Leave N,{M alone.
Speedup in nonlinear iteration not worth it.

Will this iteration converge? Probably!
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Newton’s Method
L Newton-MC
Newton-MC Algorithm

Newton-MC(u, Ny, N,{/,C, Nine, 1, Try Ta)
Evaluate Ryc = I-:(u, Nuyic); T < || Rmcl| + Ta.
while ||Ryc|| > 7 do
Compute J(u, Ni\c)
Find s which satNisfies }
1 Nye)s + F(u, Nuac)|| < 1, M)
u<—u-+s
Evaluate Ryc = I:_(u, NMC);
Nupc < NineNmc
end while
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Newton’s Method
L Newton-MC
Tracking Theorem: Assumptions

m Standard Assumptions for Newton

m Exact (no MC) Newton iteration {x}

m Initial iterate good enough and n small enough so that
lefyall < rulley]

We do not try to drive i, — 0. Not practical with an MC-based
residual.
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Newton’s Method
L Newton-MC
Tracking Theorem

Given integer K, w € (0,1), and r € (ry, 1), there are Nyc, N,{/,C,
and N, such that with probability (1 — w) for all 1 < n < K, the
iteration produced by Algorithm Newton-MC satisfies

lenll < r"lleoll,
and there is K¢ (depending only on F and u*) such that

[IF (un)ll < Ker"|[F(uo)]-
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Newton’s Method
LNewtonvMC
Tracking is not Convergence

m You only see a high probability of error/residual reduction,
m and only for a fixed (K) number of iterations.

m You have to manage Nyc to get even that.

And it gets stranger ...
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Newton’s Method
L JFNKk-MC
Consistency: Matrix-Free Krylov Methods

Residual Consistency

= cF(9)
Prob <HF(U) — F(u, Npe)|| > NMC> < 0,

plus

CJV(5)

J
NMC

Prob | ||F'(u)v — Jy(u, v, Niyc)|| > < 0.
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Newton’s Method
L JENK-MC
Bad Idea for Algorithm

Terminate inner iteration when the Monte Carlo Inexact Newton
Condition (INC-MC) holds:

19p(u, 5. Nigc) + F(ue, Nuc)Il < nll F(ue, Nuc)ll,

and obtain a nice tracking theorem.
Just like normal inexact Newton. What could go wrong?
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Newton’s Method
L JENK-MC
But there's a problem

m You call the mat-vec with every Krylov iteration.
There is no Jacobian behind that mat-vec.

m The accuracy is low.

m Errors accumulate rapidly.

m This is a big deal (Simoncini-Szyld 03-07)

m Their solution: very high accuracy for early Krylovs
m We can’t do that; MC simulation too costly.
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L JENK-MC
But there's a problem

You call the mat-vec with every Krylov iteration.
There is no Jacobian behind that mat-vec.

The accuracy is low.

Errors accumulate rapidly.

This is a big deal (Simoncini-Szyld 03-07)
m Their solution: very high accuracy for early Krylovs
m We can’t do that; MC simulation too costly.

m One solution:
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L JENK-MC
But there's a problem

You call the mat-vec with every Krylov iteration.
There is no Jacobian behind that mat-vec.

The accuracy is low.

Errors accumulate rapidly.

This is a big deal (Simoncini-Szyld 03-07)
m Their solution: very high accuracy for early Krylovs
m We can’t do that; MC simulation too costly.

m One solution: Take Youngman's Method,
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L JENK-MC
But there's a problem

You call the mat-vec with every Krylov iteration.
There is no Jacobian behind that mat-vec.

The accuracy is low.

Errors accumulate rapidly.

This is a big deal (Simoncini-Szyld 03-07)
m Their solution: very high accuracy for early Krylovs
m We can’t do that; MC simulation too costly.

m One solution: Take Youngman's Method, please.
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Newton’s Method
L JENK-MC
But there's a problem

You call the mat-vec with every Krylov iteration.
There is no Jacobian behind that mat-vec.

The accuracy is low.

Errors accumulate rapidly.

This is a big deal (Simoncini-Szyld 03-07)
m Their solution: very high accuracy for early Krylovs
m We can’t do that; MC simulation too costly.

m One solution: Take Youngman's Method, please.
Doctor, it hurts when | take too many Krylovs.
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Newton’s Method
L JFNKk-MC
So don't take too many Krylovs!

H. Youngman
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Newton’s Method
L JFnK-MC

Limitations of Youngman's Met

m Need a good preconditioner — low Krylov count is ok.
m You don't know how low, in general.
m Our example has the compactness properties you want.
m Must impose a hard limit on Krylov count and hope it's
enough.

m Theory is cleanest with GMRES as the Krylov solver.
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Newton’s Method
L JFnK-MC

Jacobian-Free Newton-Krylov-MC (JFNK-MC)

JFNK—MC(U, NMC, Ni\//IC’ Ninca 7, KL, KR» Tr, Ta)

Evaluate Ryc = F(u, Nyc); 7« 77 ||Rucl| + Ta.

while ||Ryc|| > 7 do
Use GMRES(K|) with at most Kg — 1 restarts to find s.
Terminate the Krylov iteration when INC-MC holds or after
K| x Kg linear iterations.
u<u+s
Nmc <= Ninc * Nyc;
Evaluate RMC = F(u, NMC)

end while
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Newton’s Method
L JFnK-MC

Tracking Theorem for JENK-MC

Assumptions:
m Assumptions for first tracking theorem, PLUS
m At most K; Krylovs needed to get INC for exact iteration.
m No breakdown (premature termination) in GMRES iteration.

Conclusion: Same.
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LNeutron Transport Equation

Region of Interest: Heterogeneous

From CASL Image Gallery
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Newton’s Method
LNeutron Transport Equation

Neutron Transport Equation: la

Notation:
m DCR:r=(xy,2)T €D
mQes?
m Y(r, E, Q) angular flux of Neutrons at

m space: location r
m momentum: direction €2 and energy E >0

Boundary conditions on incoming flux.
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Newton’s Method
LNeutron Transport Equation

Neutron Transport Equation: |b

This is a high-dimensional problem:
m One space dimension is 3D (space+direction+energy)
m Two space dimensions is 5D (space+ 2 x direction + energy)
m Three space dimensions is 6D (space+2 x direction+energy)

Why does one space dimension lead to a continuum of directions?
Stay tuned.
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Newton’s Method
LNeutron Transport Equation
MC vs Deterministic

m Solutions in 3D are non-smooth

m Fine grids (in 6D!) are needed to resolve the solution.

m Angular grids produce artifacts in vacuum regions.

m Poorly scaled problems (shielding) can’t be done well at all.
m MC addresses these things, but ...

m MC is slow

m MC needs tuning for do its best.

m Hybrid methods seem to solve some of the problems.
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Newton’s Method
LNeutron Transport Equation

Neutron Transport Equation: |l

Simplifications: round 1

m No time dependence.
Solve time-independent problems to integrate in time.

m Neglect fission sources.
Methods don’t change much if we put them in.
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Newton’s Method
LNeutron Transport Equation

Neutron Transport Equation: Il

Q- Vy(r, E, Q) + Xi(r, E)(r, E, Q)
= & [ dY [° dE'Sy(r, E' — E, Y — Q)u(r, E', )

+q(r’ E7 Q)/47T’

Quantity of interest: scalar flux

o(r,E)= [ (r,E.Q)dY
S2
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Newton’s Method
LNeutron Transport Equation

Neutron Transport Equation: Il

>+ and X are transmission and scattering cross sections.

They are ugly!

Cross Section (b)

92-U-238(n,gamma) ENDF /B-VI.0

100

10 2 10+3 1
Incident Neutron Energy (eV)

o+4

10+5

From CASL Image Gallery
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Newton’s Method
LNeutron Transport Equation

Solution M s: two of many

m S"V: Faster and easier to analyze
® quadrature in angle,
m differences/elements/volumes in space,
m piecewise constant in Energy (multi-group approximation).
Yet another problem with deterministic computing.
m Solve with standard linear (or nonlinear!!) solvers.

m Monte-Carlo (MC): Slower with better results

m No meshes in angle/energy

m Neutron ensemble randomly scatters via scattering/energy
cross sections

m Accumulate fluxes (and other angular moments) at the end.
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Newton’s Method
LNeutron Transport Equation

More Simplification

This is too much, so we simplify again to
m Monoenergetic (no E)
m Isotropic (no Q' — Q)
m One space dimension
You can learn a lot from even this simple case.
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Newton’s Method
LNeutron Transport Equation
Transport Equation in 1-D

a ! !/ /
)+ o) = S0 [ st + a2
Boundary Conditions:

V(0 1) = (), 0> 0;9(7, 1) = ¢r(pn), 0 < 0.
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Newton’s Method
LNeutron Transport Equation

Nonlinear Diffusion Acceleration (NDA): Step 1

Nonlinear compact fixed point problem for ¢.
Transport sweep: Given input ¢L©, solve the high-order problem

c(x)

216-0(x) + 9(x)/2

)
uaif(x,u) +Y(x, 1) =

Then compute the high-order flux
1
¢M0(x) = / RO
and current

1
JHO(x) = / Wb, i) di! = My
1

computing ) only once for both
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Newton’s Method
LNeutron Transport Equation

Nonlinear Diffusion Acceleration (NDA): Step 2

Define o
HO | 1d¢
é _ J + 3 dx
- ¢HO
The low-order nonlinear equation for ¢L© is ]-'(¢LO) = 0, where

d [—1d¢

PO =313 &

] +(1=c)o+— | D¢, S|

dx
with boundary conditions ¢t9 = ¢/©.
Equivalent to original formulation!
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Newton’s Method
LNeutron Transport Equation
Preconditioner

Preconditioner inverts

_d [-1ldw
Cdx | 3 dx

dw

L
v dx

] +(1—c)w+ D(¢"°, JH9)
with correct boundary conditions to solve linearized problem for

the Newton step.
This linearized problem is a compact fixed point problem.
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Newton’s Method
LNeutron Transport Equation
NDA Hybrid Method

m Solve the high-order problem with Monte Carlo for ¢ and J

m better results + higher cost
m BUT we are asking MC to solve a fixed source problem
no scattering is good + GPU Friendly.

m Solve the low-order problem in a standard way

m Resolve a few details
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Newton’s Method
LNeutron Transport Equation
Analytic Jacobian-Vector Product

If we plan to replace the transport sweep with a MC simulation,
then
m A finite difference Jacobian is a problem
m Accuracy is roughly square root of function accuracy at best
m MC accuracy will be low and expressed probabilistically
m So the only hope for us is an analytic Jacobian-vector product:

m chain rule + linear dependence of ¢"© and JHO on ¢L°.
m cost of mat-vec is one extra MC transport sweep.
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Newton’s Method
L Results
Example

Physical parameters:
c=.99;7=10;qg = .5;
Old Way: Beat GMRES to death and
Nyc = 10°, 108,101

New Way:
NMC “— NMC/2

with each iteration
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Newton’s Method
L Results

lteration History: Old Way

Nonlinear Residual v. Function Evaluations
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Newton’s Method
L Results

lteration History: New Way K; = 10, Kr = 1,7 = .01

Residual Histories
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Nonlinear Residual
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LCcmclusicms

Conclusions

m Tracking theorems for Newton-MC
m Watch out for linear solver errors

m Examples from neutronics simulations
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