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What’s the problem.

• Control flow of contaminants in groundwater.
• Keep plume on site.
• Keep concentrations at acceptable levels.
• Minimize cost, mass of contaminant,

contaminant concentration . . .

• Control flow and pressure.
• Municipal water supplies.
• Agriculture.
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Many approaches

• Tightly coupled simulation/optimization (Shoemaker)

• GAs (Mayer, Pinder, Minkser, Yeh . . . )

• Surrogates: response surface, neural nets

Our long-term objectives:

•• Examine many formulation, simulator, optimizer
combinations in a portable way.

• Build testbed for both groundwater and optimization
communities.

• Design new approaches.

Today: one problem/simulator/optimizer triple.
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What we do.

• Black-box optimization:
Use accepted, widely-used, production 3D simulators.
• Improved portability/documentation relative to

research codes.
• Community might listen to us.
• No guarantee of differentiability wrt design

variables.

• Put problems/solutions on the web.
http://www4.ncsu.edu/˜ctk/community.html
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Flow in the saturated zone

Ss
∂h
∂ t

= ∇ · (K∇h)+S ,

Data:

• BC, IC, spatial domain Ω
• Ss (specific storage coefficient)

• K (hydraulic conductivity)

• S is the souce/sink term,
computed from the design variables.

Output: h (hydraulic head)
Typical simulators: ADH, FEMWATER, MODFLOW.
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Species Transport

∂θC
∂ t

= ∇ · (θD ·∇C)−∇ · (θvC)+S
C
.

Data: porosity θ , interphase
Design: S C mass sources/sinks

• C is concentration, solution of PDE;

• v is velocity, computed from h;

• D is the dispersion tensor, computed from h.

Typical simulator: MT3D
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Computing the fluid velocity v

Darcy’s law says

θv =
k
µ

(∇p+ρg∇z)

• p = ρg(h− z): fluid pressure

• k: intrinsic permeability; µ : dynamic viscosity

• ρ : density; g: gravitational acceleration

• ∇z: vector in vertical direction
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What’s D

Di j = δi jαt |v|+(αl−αt)
viv j

|v|
+δi jτD∗

• αl, αt : longitudinal/transverse dispersivities

• τ : tortuosity of the porous medium

• D∗: free liquid diffusivity.
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Design variables

Number and location of wells, pumping rates.
Pumping rates and well locations go in the source term for
flow

∫

Ω
S (t)dΩ =

n

∑
i=1

Qi

and for concentration
∫

Ω
S

C(t)dΩ =
n

∑
i=1

C(xi)Qi.

Examples:

• Sum of δ functions at well locations.

• Well model with well diameter, well type, ...
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Example: Hydraulic Capture

Minimize total cost:

f T (Q) =
n

∑
i=1

c0db0
i + ∑

Qi<−10−6

c1|Qi
m|b1(zgs−hmin)b2

︸ ︷︷ ︸

f c

+

∫ t f

0

(

∑
i,Qi<−10−6

c2Qi(hi− zgs)+ ∑
i,Qi>10−6

c3Qi

)

dt

︸ ︷︷ ︸

f o

,

to keep a contaminant inside a “capture zone”.
Ω = [0,1000]× [0,1000]
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Notation

• {(xi,yi)} are well locations.

• Qi is pumping rate
(> 0 for injection, < 0 for extraction.

• di is depth of well i

• hi is head at well i (MODFLOW)

• zgs is elevation of ground surface

• Qm is design pumping rate.

• hmin is minimum allowable pumping rate.
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Boundary conditions: Unconfined aquifer

∂h
∂x

∣
∣
∣
∣
x=0

=
∂h
∂y

∣
∣
∣
∣
y=0

=
∂h
∂ z

∣
∣
∣
∣
z=0

= 0, t > 0

K
∂h
∂ z

(x,y,z = h, t > 0) =−1.903×10−8 (m/s).

h(1000,y,z, t > 0) = 20−0.001y(m),
h(x,1000,z, t > 0) = 20−0.001x(m),
h(x,y,z,0) = hs.
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Constraints I

Simple bounds:

Qemax ≤ Qi ≤ Qimax
, i = 1, ...,n

Limits on the pumps.
Simple linear inequality:

∑
i

Qi ≥ Qmax
T ,

limit on total net extraction rate.

C. T. Kelley – p.15



Constraints II

Keep wells away from Dirichlet boundary

0≤ xi,yi ≤ 800.

Bounds on h

hmin ≤ hi ≤ hmax
, i = 1, ...,n

No dry holes.
Velocity Highly nonlinear function of well locations.
50×50×10 grid.
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Formulation Decisions I

• Contain plume: constrain velocity at zone boundary.
Test velocity at five downstream locations.
Approximate velocity with difference of h.
Five new constraints.
Need only flow code. Better simulations in progress.

• Implicit filtering deals with bounds naturally.

• Treat constraints as yes/no for sampling method
• Stratify by cost.
• Avoid simulator if infeasible wrt cheap (linear)

constraints.

• Well is de-installed if pumping rate is suff small.

C. T. Kelley – p.17



Formulation Decisions II

• Discontinuous objective.
• 50×50×10 grid. Wells must be on grid nodes.

Move to nearest.
• Remove well from array (di = 0) if pumping rate is

too small.

• Treat head constraint and linear constraints
as hidden or yes-no.

• Initial iterate: two extraction, two injection
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Initial iterate

No wells
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Initial/Final Plumes

Initial Plume Plume after 5 years
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Results

Optimal configuration
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Landscapes

Vary (x1,y1) near initial iterate
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Other Approaches
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Wait a minute!

• Optimal point has one well, we start with four.
Was this fair?

• How does performance depend on initial iterate?

• Do some methods benefit from special choices?

• How can you construct a “rich” set of initial iterates for
testing?

• We’re trying:
• Use DIRECT to find feasible points.
• Use statistics to identify clusters.
• Sample wisely within the clusters.
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Optimization strategy

min
x∈D

f (x)

• Conventional gradient-based methods can fail if f is
• multi-modal,
• non-convex,
• discontinuous,
• non-deterministic, or if

• D is not determined by smooth inequalities.

Sampling methods attempt to address these problems.

C. T. Kelley – p.25



Stencil-based sampling methods

• Begin with a base point x.

• Examine points on a stencil;
reject or adjust points not in D .

• Determine location of next stencil.

• If f (x) is smallest, shrink the stencil.

Examples: Coordinate Search, Nelder-Mead,
Hooke-Jeeves, (P)MDS, GPS, Implicit Filtering

This is not global optimization.
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Example: coordinate search

Sample f at x on a stencil centered at x, scale=h

S(x,h) = {x±hei}

• Move to the best point.

• If x is the best point, reduce h.

Necessary Conditions: No legal direction points downhill
(which is why you reduce h).
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What if x is the best point?
Smooth Objective

If f (x)≤minz∈S(x,h) f (z) (stencil failure)
then
‖∇ f (x)‖= O(h)

So, if (xn,hn) are the points/scales generated by coordinate
search and f has bounded level sets, then

• hn→ 0 (finitely many grid points/level) and therefore

• any limit point of {xn} is a critical point of f .

Not a method for smooth problems.
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Model Problem
motivated by the landscapes.

min
RN

f

f = fs +φ

• fs smooth, easy to minimize; φ noise

• N is small, f is typically costly to evaluate.

• f has multiple local minima
which trap most gradient-based algorithms.
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Convergence?

Stencil failure implies that

‖∇ fs(xn)‖= O

(

hn +
‖φ‖S(xn,hn)

hn

)

where
‖φ‖S(x,h) = max

z∈S
|φ(z)|.
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Bottom line

So, if (xn,hn) are the points/scales generated by coordinate
search, f has bounded level sets, and

lim
n→∞

(hn +h−1
n ‖φ‖S(x,hn)) = 0

then

• hn→ 0 (finitely many grid points/level) and therefore

• any limit point of {xn} is a critical point of f .

Analysis for Hooke-Jeeves, MPS, GPS is similar.
Nelder-Mead is different.
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Implicit Filtering

Accelerate coordinate search with a quasi-Newton method.
imfilter(x, f , pmax,τ ,{hn},amax)

for k = 0, . . . do
fdquasi(x, f , pmax,τ ,hn,amax)

end for
pmax, τ , amax are termination parameters

fdquasi = finite difference quasi-Newton method using a
central difference gradient ∇h f .
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fdquasi(x, f , pmax,τ ,h,amax)

p = 1

while p≤ pmax and ‖∇h f (x)‖ ≥ τh do
compute f and ∇h f

terminate with success on stencil failure

update the model Hessian H if appropriate; solve

Hd =−∇h f (x)

use a backtracking line search, with at most amax backtracks,

to find a step length λ
terminate with failure on > amax backtracks

x← x+λd; p← p+1

end while
if p > pmax report iteration count failure
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Implicit Filtering: Start
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Implicit Filtering: Move
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Implicit Filtering: Move
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Implicit Filtering: Stencil Failure
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Implicit Filtering: Shrink/Move
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Implicit Filtering: Termination
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Basic Convergence Theorem

Let (xn,hn) be the sequence from implicit filtering.
If

• ∇ fs is Lipschitz continuous.

• limn→∞(hn +h−1
n ‖φ‖S(x,hn)) = 0

• fdquasi terminates with success for infinitely many n.

then any limit point of {xn} is a critical point of fs.
Convergence rates need more.
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Hidden Constraints

A hidden constraint is violated if the call to f fails.
One can (we do) treat all but bound constraints as hidden.
What to do?

• Assign a large value.

• Assign a value of infinity and reject the sample. OK for
HJ/MDS, bad for IF.

• Assign a value a bit higher than the nearby points.

• Reject and use least squares to compute ∇h f .
• Coming in new version.
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NCSU fortran implementation: IFFCO

• Naturally parallel; but watch out for load balancing.

• Use best value in stencil + quasi-Newton search.

• Quasi-Newton model Hessian essential in practice.

• Termination
• fdquasi: stencil failure, small gradient, amax, pmax
• overall: list of scales, budget, target

• parameters: IFFCO has reasonable defaults

• hidden constraints: f does not return a value
IFFCO is prepared

• MATLAB: imfil.m new version coming soon
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How to get the software

• IFFCO: Implicit Filtering For Constrained Optimization

• New version released May, 2001
MPI/PVM/Serial

• ftp to ftp.math.ncsu.edu in
FTP/kelley/iffco/IFFCO.tar.gz or email to
Tim_Kelley@ncsu.edu
http://www4.ncsu.edu/˜ctk
http://www4.ncsu.edu/˜ctk/iffco.html
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Community Problems

• Suite of problems in groundwater remediation
3D, flow+transport, varying difficulty.

• We provide or point to simulators/optimization codes
that will produce a formulation and a solution.

• No pretense that formulation or solution is best
possible.

• Portable, good testbed for optimization codes.
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How to get the Community Problems

• Constantly updated on
http://www4.ncsu.edu/˜ctk/community.html

• Packages include problems, makefiles, IFFCO
example.
You need to get the simulators; we tell you how.

• Tested on
• g77: Solaris, Red Hat 7.3,8.0, MAC OSX, IBM-SP
• MPI: IBM-SP, several linux clusters

• Three problems in place (only MODFLOW).

• New problems under construction.

• Massive comparison in progress
GA, NOMAD, Boeing DE, DIRECT, APPS
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Conclusions

• Optimal design of groundwater remediation problems
• Formulation: constraints

specification of problem
choice of simulators

• Community problems
• Solution: we like sampling methods

• Sampling methods
• Variants of coordinate search
• Implicit filtering
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