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Outline

• Nonsmooth models
• Richards’ equation:

van Genuchten/Mualem formulae
• Reactive transport

Freundlich isotherm

• What solvers must do
• ODE/DAE formulations
• Nonsmooth calculus and ADH
• Temporal error estimation and control (time?)

• Conclusions
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Richards’ Equation: pressure head form

SsSa(ψ)
∂ψ
∂ t

+η
∂Sa(ψ)

∂ t
= ∇ · [K(ψ)∇(z+ψ)]

ψ pressure head Ss specific storage
Sa(ψ) saturation η porosity
K(ψ) hydraulic conductivity
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van Genuchten and Mualem formulae

Sa(ψ) =

{

Sr + (1−Sr)
[1+(α |ψ|)n]m , ψ < 0

1, ψ ≥ 0
,

K(ψ) =

{

Ks
[1−(α |ψ|)n−1[1+(α |ψ|)n]−m]2

[1+(α |ψ|)n]m/2 , ψ < 0

Ks, ψ ≥ 0
.

Sr residual saturation
α coefficient for mean pore size
Ks saturated hydraulic conductivity
n measure of pore size uniformity; m = 1−1/n
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Non-smooth nonlinearities

• K is not Lipschitz continuous if 1 < n < 2

• non-Lipschitz K causes many problems
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Non-smooth nonlinearities

• K is not Lipschitz continuous if 1 < n < 2

• non-Lipschitz K causes many problems
• Nonlinear solvers in implicit temporal integration fail
• Bizarre nonphysical effects

See Chris Kees’ poster

• Fix: interpolate (or fit data) with a spline
• Speeds up the simulation
• Makes the nonlinearity smooth

or at least Lipschitz continuous

• ERDC ADH code uses PL splines
Lipschitz continuous/not differentiable
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Reactive Transport in Porous Media

Freundlich isotherm:

Csη
ρb

= Kmax(C,0)r

Transport equation:

(C +
ρb

η
Kmax(C,0)r)t +∇ · [Cv−D∇C] = 0

Cs equilibrium concentration in the solid phase

r Freundlich exponent

C Freundlich coefficient

ρb bulk density of the solid phase

η porosity

v mean pore velocity

D hydrodynamic dispersion tensor
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Nonsmoothness and a Fix

Nonlinearity is not Lipschitz continuous if 0 < r < 1.
Fix: Differential Algebraic Equation (DAE) formulation
Differential equation:

mt +∇ · [Cv−D∇C] = 0.

Algebraic constraint:

(

η max(m−C,0)

ρbK

)1/r

−C = 0.

And now everything is differentiable,
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Nonsmoothness and a Fix

Nonlinearity is not Lipschitz continuous if 0 < r < 1.
Fix: Differential Algebraic Equation (DAE) formulation
Differential equation:

mt +∇ · [Cv−D∇C] = 0.

Algebraic constraint:

(

η max(m−C,0)

ρbK

)1/r

−C = 0.

And now everything is differentiable,
but I’ve added an equation.
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DAE and ODE Dynamics

ut = f (t,u), u(0) = u0 ODE

f (t,u,ut) = 0, u(0) = u0,u
′(0) = u′0 DAE

We have at most Index-one DAEs here.
i.e. Implicit Euler works.
Initial data for u′(0) is the solver’s job.
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What DAEs can do for you.

• Make temporal integration work better (Richards)

• Hide nonsmooth physics (Freundlich)
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What DAEs can do for you.

• Make temporal integration work better (Richards)

• Hide nonsmooth physics (Freundlich)

It’s still your job to design good solvers

• regularity of the solution

• differentiability of the nonlinearity

• discretizations

• linear solvers and preconditioning
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DAE formulation of Reactive Transport Equation

Two equations for m and C

mt =−∇ · [Cv−D∇C] = f (m,C) Differential Equation

and
(

η max(m−C,0)

ρbK

)1/r

−C = g(m,C)= 0 Algebraic Constraint

There’s no Ct anywhere.
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Solving Reactive Transport Equation
with Implicit Euler

Discretize in space, and advance in time by solving

mn+1 = mn +h f (mn+1,Cn+1),

g(mn+1,Cn+1) = 0.

So the equation is for u = (m,C)T .
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Newton’s method

Solve
F(u) = 0

by
u+ = uc + s, F ′(uc)s =−F(uc)
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Newton’s method

Solve
F(u) = 0

by
u+ = uc + s, F ′(uc)s =−F(uc)

Solve for F ′(uc)s =−F(uc) for the step by

• Gaussian elimination (compute and factor matrix)

• iterative method with computed
(approximate) Jacobian

• Matrix free: iterative method,
finite difference Jacobian-vector products
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Newton’s method

Solve
F(u) = 0

by
u+ = uc + s, F ′(uc)s =−F(uc)

Solve for F ′(uc)s =−F(uc) for the step by

• Gaussian elimination (compute and factor matrix)

• iterative method with computed
(approximate) Jacobian

• Matrix free: iterative method,
finite difference Jacobian-vector products

Everything works if F ′(u∗) is nonsingular.
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What do you feed the solver?

F

(

m
C

)

=

(

m−mn−h f (m,C)

g(m,C)

)

=

(

0
0

)

Solve with Newton. Converged result is (mn+1,Cn+1)T .

C. T. Kelley – p.14



What do you feed the solver?

F

(

m
C

)

=

(

m−mn−h f (m,C)

g(m,C)

)

=

(

0
0

)

Solve with Newton. Converged result is (mn+1,Cn+1)T .
For small h,

F ′ =

(

I−h fm −h fC
gm gC

)

is nonsingular if gC is nonsingular (aka index one).
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Is RE a DAE?

Discretize in space, and you have

SsSa(ψ)
∂ψ
∂ t

+η
∂Sa(ψ)

∂ t
= N(ψ)

ODE solve: Use the chain rule and get

∂ψ
∂ t

=
N(ψ)

SsSa(ψ)+ηS′a(ψ)
,

so implicit Euler is . . .
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Implicit Euler for ODE formulation of RE

ψn+1 = ψn +h
N(ψn+1)

SsSa(ψn+1)+ηS′a(ψn+1)
,

performs poorly:
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Implicit Euler for ODE formulation of RE

ψn+1 = ψn +h
N(ψn+1)

SsSa(ψn+1)+ηS′a(ψn+1)
,

performs poorly:

• small denominator,

• small denominator is squared for the Jacobian,

• leading to many solver failures, which

• result in very small timesteps.
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DAE formulation

SsSa(ψn+1)(ψn+1−ψn)+η(Sa(ψn+1)−Sa(ψn)) = hN(ψn+1).

This is a lot better,

• larger time steps,

• happier nonlinear solver,

• error control easier to understand, and

• what most folks do.
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ERDC ADH Code

• approximate VG-Mualem formulae with PL splines

• We explain the success of
• finite difference approximation of Jacobians
• Newton’s method for implicit time-stepping
• first order error estimation and control
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ADH temporal integration

Solve

F(u) = SsSa(u)(u−ψn)+η(Sa(u)−Sa(ψn))−hN(u) = 0,

with Newton’s method.
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ADH temporal integration

Solve

F(u) = SsSa(u)(u−ψn)+η(Sa(u)−Sa(ψn))−hN(u) = 0,

with Newton’s method.
Approximate F ′(u) by a finite difference Jacobian ∂hF(u)

u+ = uc− (∂hF(uc))
−1F(uc),

and you get good results. Why?
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Nonsmooth Calculus

F ∈ LIP implies F differentiable a.e.
The generalized Jacobian (Clarke) at u is

∂F(u) = co

{

lim
u j→u;u j∈DF

F ′(u j)

}
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The generalized Jacobian (Clarke) at u is

∂F(u) = co

{

lim
u j→u;u j∈DF

F ′(u j)

}

You’d like to replace Newton’s method with

un+1 = un−V−1
n F(un)

where Vn ∈ ∂F(un).
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Nonsmooth Calculus

F ∈ LIP implies F differentiable a.e.
The generalized Jacobian (Clarke) at u is

∂F(u) = co

{

lim
u j→u;u j∈DF

F ′(u j)

}

You’d like to replace Newton’s method with

un+1 = un−V−1
n F(un)

where Vn ∈ ∂F(un).
How do you compute Vn?
Can you use this stuff in the real world?
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Piecewise smooth function: φ = φl +φr
∂φ(0) = [φ ′l (0),φ ′r(0)], a SET.
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Difference approximations

Scalar functions

∂hφ(u) =
φ(u+h)−φ(u)

h

For Lipschitz functions:

∂hφ(u) ∈ ∂φ(ū)+O(h)

where |u− ū| ≤ h.
Same story for scalar constitutive laws in PDEs.
If you differentiate in coordinate directions!
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Difference approximation accuracy
φ ′l (0)+O(h)≤ ∂hφ(u)≤ φ ′r(0)+O(h), so ∂hφ(u) ∈ ∂φ(0)+O(h)
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Semismoothness

A Lipschitz function F is semismooth (Mifflin, Pang, Qi) if

lim
w→0,V∈∂ F(u+w)

‖F(u+w)−F(u)−Vw‖
‖w‖ = 0.

and semismooth of order 1 at u if

F(u+w)−F(u)−Vw = O(‖w‖2)

for all w ∈ RN and V ∈ ∂F(u+w) as w→ 0.
What you need for local convergence of Newton’s method.
Piecewise smooth functions are semismooth of order 1.
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Why semismoothness?

If

• F semismooth of order 1,

• F(u∗) = 0, and

• everything in ∂F(u∗) uniformly nonsingular,

• uc near u∗,

then if

u+ = uc−V−1F(uc), where V ∈ ∂F(uc),
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Why semismoothness?

If

• F semismooth of order 1,

• F(u∗) = 0, and

• everything in ∂F(u∗) uniformly nonsingular,

• uc near u∗,

then if

u+ = uc−V−1F(uc), where V ∈ ∂F(uc),

you get fast local convergence

‖u+−u∗‖= O(‖uc−u∗‖2).
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Convergence Proof, e = u−u∗

Semismoothness (u← u∗,w← ec,u+w← uc) implies

F(uc)−Vec = O(‖ec‖2)

C. T. Kelley – p.26



Convergence Proof, e = u−u∗

Semismoothness (u← u∗,w← ec,u+w← uc) implies

F(uc)−Vec = O(‖ec‖2)

Subtract u∗ from both sides of

u+ = uc−V−1F(uc),

C. T. Kelley – p.26



Convergence Proof, e = u−u∗

Semismoothness (u← u∗,w← ec,u+w← uc) implies

F(uc)−Vec = O(‖ec‖2)

Subtract u∗ from both sides of

u+ = uc−V−1F(uc),

to get

e+ = ec−V−1F(uc) = ec− ec +O(‖ec‖2) = O(‖ec‖2).
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So what’s up with ADH?

u+ = uc− (∂hF(uc))
−1F(uc)

and

∂hF(uc) ∈ ∂F(ū)+O(h)
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So what’s up with ADH?

u+ = uc− (∂hF(uc))
−1F(uc)

and

∂hF(uc) ∈ ∂F(ū)+O(h)

which implies

e+ = O(‖ec‖2 +‖ec‖h+h).

Looks just like Newton if ‖ec‖>>
√

h.
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Iterative Linear Solvers

ADH uses preconditioned Krylov linear solvers.
Termination on small relative linear residual,

‖F(uc)+∂hF(uc)s‖ ≤ ηc‖F(uc)‖.

Convergence,

e+ = O(‖ec‖2 +‖ec‖(ηc +h)+h).
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Iterative Linear Solvers

ADH uses preconditioned Krylov linear solvers.
Termination on small relative linear residual,

‖F(uc)+∂hF(uc)s‖ ≤ ηc‖F(uc)‖.

Convergence,

e+ = O(‖ec‖2 +‖ec‖(ηc +h)+h).

Tradeoffs:

• Keep η small (accurate Newton step), for nonlinear
performance,

• but not too small, to minimize linear solver cost.
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Optimal difference increment

εF : error in evaluation (eg floating point roundoff)
Include this in V to get

V (u) ∈ ∂F(ū)+O(h+ εF/h)
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Optimal difference increment

εF : error in evaluation (eg floating point roundoff)
Include this in V to get

V (u) ∈ ∂F(ū)+O(h+ εF/h)

So, if ‖en‖=
√

h, then

en+1 = O((h+ εF/h)‖en‖+‖en‖2 +h)

= O
(

εF
h1/2 +h

)
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Optimal difference increment

εF : error in evaluation (eg floating point roundoff)
Include this in V to get

V (u) ∈ ∂F(ū)+O(h+ εF/h)

So, if ‖en‖=
√

h, then

en+1 = O((h+ εF/h)‖en‖+‖en‖2 +h)

= O
(

εF
h1/2 +h

)

which is minimized if h = O(ε2/3
F )≈ 10−10 in IEEE.
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Temporal Error Estimation and Control

Process: for u′ = F(u), F Lipschitz continuous
Goal: local truncation error < τ .

• Begin with un and un−1,
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Temporal Error Estimation and Control

Process: for u′ = F(u), F Lipschitz continuous
Goal: local truncation error < τ .

• Begin with un and un−1,

• let up be a linear predictor to un+1,

up = un +hn
un−un−1

hn−1

• Compute implicit Euler step, un+1 by solving

un+1 = un +hnF(un+1)

• Compare un+1 and up to estimate error and change
step size.
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Details, details, details

• Estimate Lipschitz constant of u′ by

L = 2‖un+1−up‖/|2h2
n−hnhn−1|
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Details, details, details

• Estimate Lipschitz constant of u′ by

L = 2‖un+1−up‖/|2h2
n−hnhn−1|

• Estimated local truncation error is Lh2
n/2.

• > τ? Enforce Lh2
n/2 < .9τ , try again.

• Too many nonlinear iterations, reduce hn, try again.
This was the problem in ODE form of RE!

• hn ok? Enforce Lh2
n+1/2 < .9τ

• Completely rigorous
if we’re getting the Lipschitz constant right.
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Numerical Experiments

Compare

Ln+1 = 2‖un+1−up‖/|2h2
n−hnhn−1|

with

L(un+1)
‖F(un+1)−F(un)‖

tn+1− tn

You want to see

rn =
Ln

L(un)
≥ 1.

Study, RE for two media with 1 < n < 2.
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Media Properies

Parameter clay silt
n 1.09 1.37
α 0.244 0.478
Sr 0.179 0.074
η 0.33 0.40
Ks 1.10808e-5 1.1801e-03
Tf inal 600 days 150 days
maxh 10 days 5 days

τ = 10−2, h0 = 10−9
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Clay
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Silt
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Conclusions

• Nonsmooth nonlinearities are not a disaster
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Conclusions

• Nonsmooth nonlinearities are not a disaster
• You can finesse them (Reactive Transport).
• You can confront them directly (RE).

• Semismoothness is all you need for Newton’s method.
• Exotic math; software needn’t know about it.
• Solvers work, so error control also works.
• Implemented and working in ADH.

• High-order methods in time seem to work. Why?

C. T. Kelley – p.36
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