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Anderson Acceleration Algorithm

Solve fixed point problems
u= G(u)
faster than Picard iteration
ukr1 = G(ug).

Motivation (Anderson 1965) SCF iteration in electronic structure
computations.
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Why not Newton?

Newton's method

rsr = g — (I = G'(u)) " (uie — G(uk))

m converges faster,
m does not require that G be a contraction,
m needs G'(u) or G'(u)w.

Sometimes you will not have G'.
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Electronic Structure Computations

Nonlinear eignevalue problem: Kohn-Sham equations

His[¥i] = —%V%i + V(p)i = Aiyj i=1,N

where the charge density is

N
p=> llwill*.
i=1

Write this as
H(p)V = AV
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Self-Consistent Field iteration (SCF)

Given p

m Solve the linear eigenvalue problem
H(p)V = AV

for the N eigenvalues/vectors you want.

m Update the charge density via

N
pe Y il
i=1
m Terminate if change in p is sufficiently small.
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SCF as a fixed-point iteration

SCF is a fixed point iteration

p < G(p)
Not clear how to differentiate G
m termination criteria in eigen-solver

m multiplicities of eigenvalues not know at the start
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Multiphysics Coupling

. . i . NS
Given several simulators: {5;};2

m The simulators depend on a partition {XJ}JN:S1 of the primary
variables

m S; computes X; as a function of Z; = {Xj};i

m The maps S; could contain

m Black-box solvers
m Legacy codes

m Table lookups

m Internal stochastics

m Jacobian information very hard to get.
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lteration to self-consistency

Chose one X; to expose. Then
mforj=1:Ns,j#i
Xj = 5j(Z)
| ] X,' < 5,'(2,')

This is a fixed point problem
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Basic Algorithm

anderson(ug, G, m)
up = G(Uo); Fo = G(UO) — U
for k=1,... do
my = min(m, k)
Fk = G(uk) — Uy
Minimize || ka OéJ’-(Fk—kaer subject to
ZJka i =1L
1 = (1= B) J ~09; S Uk—my+j + Br j e’ j £ G(Uk—my+7)
end for

C. T. Kelley Kelley Research Poly U, May 16, 2014 10 / 31



Kelley Research

L Algorithms
LMotivation and Applications

Terminology

m, depth. We refer to Anderson(m).
Anderson(0) is Picard.

F(u) = G(u) — u, residual
{aj’-‘}, coefficients

{Bx}, mixing parameters
|- I, €2, €%, or £

We set B, = 1 in this talk.
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Optimization Problem for Coefficients: Version |

This version is useful for analysis. Solve the unconstrained problem

my

min || F(u) = > of (F(uk—m,+) — F(u)]l,
j=1

for {aj’-‘}j-‘zl. Then af by

Not optimal for implementation (more later).
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Linear Problems

Here

G(u)=Mu+b

where M is N x N and ||M]|| < 1.
Theorem: (Toth-K, 2013) The residuals for Anderson(m)
converges to 0 g-linearly with g-factor c.

IF ()| < ellF(u)l

No worse that Picard iteration.
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Proof: residual convergence

Claim: [[F(uk41)l| = [[b— (I = M)uisa || < cl| F(uk)|l
proof: Since Zaj =1, the new residual is

F(Uk+1) =b-— (/ — M)Uk+1
=2 aj[b— (I = M)(b+ Mu_m,+)]
= J,'n:ko ajM [b— (/- M)Uk—mk-i-j]

= M7 aiF (Uk—m,+)
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Proof continued

So, by the optimality condition

IF (uer)ll - < (IMIHS 2 g F (uk—myt))|

< [IMIECui)ll < ell F(u)l
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r-linear convergence of {uy}

If we set e = u— u*, then F(u) = —(/ — M)e. So g-linear
convergence of residuals implies that

(1= O)llexll < [IF (u)ll < c“[IF(uo)ll < (1 + c)eol]

14+c) 4
<[ — .
el < (1) el

which is r-linear convergence with r-factor c.

and hence
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Connection to GMRES

Recall that the k GMRES iteration is the solution of the linear
least squares problem

in |b—(/-M
jemin (16— (1 = M)ull2

where the Krylov subspace is
Ky = span(ro, (I = M)ro, ..., (I — M)k_lro)

Anderson iteration with the ¢? norm is also an residual
minimization.

Connection: (Walker-Ni, 2011)

If | — M is nonsingular and GMRES residuals are strictly decreasing
in norm, then

Ukt1 = G(ukGMRES).
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m Assume G is a contraction, constant c.
Objective: do no worse than Picard

m Local theory only; | el is small.
m Better results for || - |2
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Assumptions: m =1

m There is u* € RN such that F(u*) = G(u*) — u* = 0.
m ||G(u) — G(v)|| < c||lu—v| for u,v near u*.
m G is Lipschitz continuously differentiable near u*

Words: G has a fixed point and is a smooth contraction in a
neighborhood of that fixed point.
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Convergence for Anderson(1) with ¢2 optimization

Let ¢ < € < 1, then Anderson(1) converges and

F
lim sup 7” (Uir)]l2 <ec.

koo || F(ui)ll2
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Assumptions: m > 1, any norm

m The assumptions for m =1 hold.
m There is M, such that for all Kk >0

my

> laj < M.

j=1
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Convergence for Anderson(m), any norm

Assumptions and c < ¢ < 1
If ug is sufficiently close to u* then the Anderson iteration
converges to u* r-linearly with r-factor no greater than ¢. In fact

IF(ll < & (o)l (1)
and )
el < Gy @)

C. T. Kelley Kelley Research Poly U, May 16, 2014 22 /31



Kelley Research
leplementation and Example
Implementation

At iteration k solve

mk—l
emipn |F(uk) — Z 0;(F(ujr1) — F(up)ll
€R™k =
for 6 € R™«. Then
mk—l
uk+1 = G(uk) — Z gjl'((G(uj—i-l) - G(Uj))'
=0

In terms of the original iteration
ap = ao,aj = 9j —(91',1 for 1 SJ < my — 1 and Om, = 1 —6mk_1.
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Why is this better?

m Coefficient matrices only change by a column per iteration.
m Can update QR factorization “fast” to compute 6.

m Somewhat better conditioning.

Only the first point matters since m is typically very small.
We do it this way in the example.
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Example from Radiative Transfer

Chandrasekhar H-equation

w € [0,1] is a physical parameter.
F'(H*) is singular when w = 1.

PG (H)<1-VI-w<1
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Numerical Experiments

Discretize with 500 point composite midpoint rule.
Compare Newton-GMRES with Anderson(m).
Terminate when || F(uk)l|2/]|F(uo)||2 < 1078
w=.5,.99.1.0

0<m<6

01, 2, 1> optimizations
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Newton-GMRES vs Anderson(0)

Function evaluations:

Newton-GMRES Fixed Point
w 5 99 10 5 99 1.0
Fs 12 18 49 11 75 23970
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#F Optimization 2% Optimization £°° Optimization
w m | Fs  Kmax Smax Fs  Kmax Smax Fs  Kmax Smax
050 1 7 1.00e+00 1.4 7 1.00e+00 1.4 7 1.00e+4-00 1.5
099 1 11 1.00e+00 3.5 | 11 1.00e+00 40| 10 1.00e+00 10.1
1.00 1 | 21 1.00e+00 3.0 | 21 1.00e+00 3.0 | 19 1.00e+00 4.8
050 2 6 1.36e+03 1.4 6 2.90e+03 1.4 6 2.24e+04 1.4
099 2 10 1.19e+04 5.2 | 10 9.81e+03 5.4 | 10 4.34e+02 5.9
1.00 2 | 18 1.02e+05 43.0 | 16 2.90e+03 14.3 | 34 5.90e+05 70.0
050 3 6 7.86e+05 1.4 6 6.19e+05 1.4 6 5.91e405 1.4
099 3 | 10 6.51e+05 52 | 10 2.17e+06 5.4 | 11 1.69e+06 5.9
1.00 3 | 22 1.10e+08 184 | 17 2.99e+06 23.4 | 51 9.55e4+07 66.7
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2 Optimization £% Optimization £°° Optimization
w m | Fs  Kmax Smax Fs  Kmax Smax Fs  Kmax Smax
050 4 7 2.64e+09 1.5 6 9.63e+08 1.4 6 9.61le408 1.4
099 4 | 11 1.85e+09 52 | 11 6.39e+08 54 | 11 1.61le+09 5.9
1.00 4 | 23 232e+08 127 | 21 6.25e+08 6.6 | 35 1.38e+09 49.0
050 5 7 1.80e+13 1.4 6 2.46e+10 1.4 6 2.48e+10 1.4
099 5 11 3.07e+10 5.2 | 12 1.64e+11 54 | 13 3.27e+11 5.9
1.00 5 21 2.56e+09 21.8 | 27 1.06e+10 148 | 32 4.30e+09 190.8
050 6 7 2.65e+14 1.4 6 2.46e+10 1.4 6 2.48e+10 1.4
099 6 12 4.63e+11 5.2 | 12 1.49e+12 54 | 12 227e+11 5.9
1.00 6 31 2.6le+10 458 | 35 1.44e+4+11 180.5 | 29 3.51le+10 225.7
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Observations

m For m > 0, Anderson(m) is much better than Picard
m Anderson(m) does better than Newton GMRES

m There is little benefit in m > 3

m /> optimization seems to be a poor idea

m /! optimization appears fine, but the cost is not worth it
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L Summary

m Anderson acceleration can improve Picard iteration

m Implementation does not require derivatives

m Good when Newton is not possible
m Convergence theory (and practice) is local

m Applications to electronic structure computations and
multiphysics coupling
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