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Algorithms

Motivation and Applications

Anderson Acceleration Algorithm

Solve fixed point problems

u = G (u)

faster than Picard iteration

uk+1 = G (uk).

Motivation (Anderson 1965) SCF iteration in electronic structure
computations.
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Algorithms

Motivation and Applications

Why not Newton?

Newton’s method

uk+1 = uk − (I − G ′(uk))−1(uk − G (uk))

converges faster,

does not require that G be a contraction,

needs G ′(u) or G ′(u)w .

Sometimes you will not have G ′.
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Algorithms

Motivation and Applications

Electronic Structure Computations

Nonlinear eignevalue problem: Kohn-Sham equations

Hks [ψi ] = −1

2
∇2ψi + V (ρ)ψi = λiψi i = 1,N

where the charge density is

ρ =
N∑
i=1

‖ψi‖2.

Write this as
H(ρ)Ψ = ΛΨ
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Algorithms

Motivation and Applications

Self-Consistent Field iteration (SCF)

Given ρ

Solve the linear eigenvalue problem

H(ρ)Ψ = ΛΨ

for the N eigenvalues/vectors you want.

Update the charge density via

ρ←
N∑
i=1

‖ψi‖2.

Terminate if change in ρ is sufficiently small.
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Motivation and Applications

SCF as a fixed-point iteration

SCF is a fixed point iteration

ρ← G (ρ)

Not clear how to differentiate G

termination criteria in eigen-solver

multiplicities of eigenvalues not know at the start
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Algorithms

Motivation and Applications

Multiphysics Coupling

Given several simulators: {Sj}NS
j=1

The simulators depend on a partition {Xj}NS
j=1 of the primary

variables

Si computes Xi as a function of Zi = {Xj}j 6=i

The maps Si could contain

Black-box solvers
Legacy codes
Table lookups
Internal stochastics

Jacobian information very hard to get.
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Iteration to self-consistency

Chose one Xi to expose. Then

for j = 1 : NS , j 6= i
Xj = Sj(Zj)

Xi ← Si (Zi )

This is a fixed point problem
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Algorithms

Motivation and Applications

Basic Algorithm

anderson(u0,G ,m)

u1 = G (u0); F0 = G (u0)− u0
for k = 1, . . . do
mk = min(m, k)
Fk = G (uk)− uk
Minimize ‖

∑mk
j=0 α

k
j Fk−mk+j‖ subject to∑mk

j=0 α
k
j = 1.

uk+1 = (1− βk)
∑mk

j=0 α
k
j uk−mk+j + βk

∑mk
j=0 α

k
j G (uk−mk+j)

end for
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Terminology

m, depth. We refer to Anderson(m).
Anderson(0) is Picard.

F (u) = G (u)− u, residual

{αk
j }, coefficients

{βk}, mixing parameters

‖ · ‖, `2, `1, or `∞

We set βk = 1 in this talk.
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Motivation and Applications

Optimization Problem for Coefficients: Version I

This version is useful for analysis. Solve the unconstrained problem

min ‖F (uk)−
mk∑
j=1

αk
j (F (uk−mk+j)− F (uk))‖,

for {αk
j }kj=1. Then αk

0 by

αk
0 = 1−

mk∑
j=1

αk
j .

Not optimal for implementation (more later).
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Linear Problems

Linear Problems

Here
G (u) = Mu + b

where M is N × N and ‖M‖ < 1.
Theorem: (Toth-K, 2013) The residuals for Anderson(m)
converges to 0 q-linearly with q-factor c .

‖F (uk+1)‖ ≤ c‖F (uk)‖.

No worse that Picard iteration.
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Theory

Linear Problems

Proof: residual convergence

Claim: ‖F (uk+1)‖ = ‖b − (I −M)uk+1‖ ≤ c‖F (uk)‖
proof: Since

∑
αj = 1, the new residual is

F (uk+1) = b − (I −M)uk+1

=
∑mk

j=0 αj [b − (I −M)(b + Muk−mk+j)]

=
∑mk

j=0 αjM [b − (I −M)uk−mk+j ]

= M
∑mk

j=0 αjF (uk−mk+j)

C. T. Kelley Kelley Research Poly U, May 16, 2014 14 / 31



Kelley Research

Theory
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Proof continued

So, by the optimality condition

‖F (uk+1)‖ ≤ ‖M‖‖
∑mk

j=0 αjF (uk−mk+j)‖

≤ ‖M‖‖F (uk)‖ ≤ c‖F (uk)‖
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Linear Problems

r-linear convergence of {uk}

If we set e = u − u∗, then F (u) = −(I −M)e. So q-linear
convergence of residuals implies that

(1− c)‖ek‖ ≤ ‖F (uk)‖ ≤ ck‖F (u0)‖ ≤ ck(1 + c)‖e0‖

and hence

‖ek‖ ≤
(

1 + c

1− c

)
ck‖e0‖.

which is r-linear convergence with r-factor c .
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Connection to GMRES

Recall that the k GMRES iteration is the solution of the linear
least squares problem

min
u∈u0+Kk

‖b − (I −M)u‖2

where the Krylov subspace is

Kk = span(r0, (I −M)r0, . . . , (I −M)k−1r0)

Anderson iteration with the `2 norm is also an residual
minimization.
Connection: (Walker-Ni, 2011)
If I −M is nonsingular and GMRES residuals are strictly decreasing
in norm, then

uk+1 = G (uGMRES
k ).
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Nonlinear Theory

Assume G is a contraction, constant c.
Objective: do no worse than Picard

Local theory only; ‖e0‖ is small.

Better results for ‖ · ‖2.
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Assumptions: m = 1

There is u∗ ∈ RN such that F (u∗) = G (u∗)− u∗ = 0.

‖G (u)− G (v)‖ ≤ c‖u − v‖ for u, v near u∗.

G is Lipschitz continuously differentiable near u∗

Words: G has a fixed point and is a smooth contraction in a
neighborhood of that fixed point.
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Nonlinear Theory

Convergence for Anderson(1) with `2 optimization

Let c < ĉ < 1, then Anderson(1) converges and

lim sup
k→∞

‖F (uk+1)‖2
‖F (uk)‖2

≤ c.
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Nonlinear Theory

Assumptions: m > 1, any norm

The assumptions for m = 1 hold.

There is Mα such that for all k ≥ 0

mk∑
j=1

|αj | ≤ Mα.
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Theory

Nonlinear Theory

Convergence for Anderson(m), any norm

Assumptions and c < ĉ < 1
If u0 is sufficiently close to u∗ then the Anderson iteration
converges to u∗ r-linearly with r-factor no greater than ĉ . In fact

‖F (uk)‖ ≤ ĉk‖F (u0)‖ (1)

and

‖ek‖ ≤
(1 + c)

1− c
ĉk‖e0‖. (2)
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Implementation and Example

Implementation

At iteration k solve

min
θ∈Rmk

‖F (uk)−
mk−1∑
j=0

θj(F (uj+1)− F (uj))‖

for θ ∈ Rmk . Then

uk+1 = G (uk)−
mk−1∑
j=0

θkj (G (uj+1)− G (uj)).

In terms of the original iteration

α0 = θ0, αj = θj − θj−1 for 1 ≤ j ≤ mk − 1 and αmk
= 1− θmk−1.
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Implementation and Example

Why is this better?

Coefficient matrices only change by a column per iteration.

Can update QR factorization “fast” to compute θ.

Somewhat better conditioning.

Only the first point matters since m is typically very small.
We do it this way in the example.
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Example from Radiative Transfer

Chandrasekhar H-equation

H(µ) = G (H) ≡
(

1− ω

2

∫ 1

0

µ

µ+ ν
H(ν) dν.

)−1
ω ∈ [0, 1] is a physical parameter.
F ′(H∗) is singular when ω = 1.

ρ(G ′(H∗)) ≤ 1−
√

1− ω < 1
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Numerical Experiments

Discretize with 500 point composite midpoint rule.

Compare Newton-GMRES with Anderson(m).

Terminate when ‖F (uk)‖2/‖F (u0)‖2 ≤ 10−8

ω = .5, .99, 1.0

0 ≤ m ≤ 6

`1, `2, `∞ optimizations
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Newton-GMRES vs Anderson(0)

Function evaluations:

Newton-GMRES Fixed Point

ω .5 .99 1.0 .5 .99 1.0

F s 12 18 49 11 75 23970
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Implementation and Example

Anderson(m)

`1 Optimization `2 Optimization `∞ Optimization

ω m F s κmax Smax F s κmax Smax F s κmax Smax

0.50 1 7 1.00e+00 1.4 7 1.00e+00 1.4 7 1.00e+00 1.5
0.99 1 11 1.00e+00 3.5 11 1.00e+00 4.0 10 1.00e+00 10.1
1.00 1 21 1.00e+00 3.0 21 1.00e+00 3.0 19 1.00e+00 4.8
0.50 2 6 1.36e+03 1.4 6 2.90e+03 1.4 6 2.24e+04 1.4
0.99 2 10 1.19e+04 5.2 10 9.81e+03 5.4 10 4.34e+02 5.9
1.00 2 18 1.02e+05 43.0 16 2.90e+03 14.3 34 5.90e+05 70.0
0.50 3 6 7.86e+05 1.4 6 6.19e+05 1.4 6 5.91e+05 1.4
0.99 3 10 6.51e+05 5.2 10 2.17e+06 5.4 11 1.69e+06 5.9
1.00 3 22 1.10e+08 18.4 17 2.99e+06 23.4 51 9.55e+07 66.7
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Anderson(m)

`1 Optimization `2 Optimization `∞ Optimization

ω m F s κmax Smax F s κmax Smax F s κmax Smax

0.50 4 7 2.64e+09 1.5 6 9.63e+08 1.4 6 9.61e+08 1.4
0.99 4 11 1.85e+09 5.2 11 6.39e+08 5.4 11 1.61e+09 5.9
1.00 4 23 2.32e+08 12.7 21 6.25e+08 6.6 35 1.38e+09 49.0
0.50 5 7 1.80e+13 1.4 6 2.46e+10 1.4 6 2.48e+10 1.4
0.99 5 11 3.07e+10 5.2 12 1.64e+11 5.4 13 3.27e+11 5.9
1.00 5 21 2.56e+09 21.8 27 1.06e+10 14.8 32 4.30e+09 190.8
0.50 6 7 2.65e+14 1.4 6 2.46e+10 1.4 6 2.48e+10 1.4
0.99 6 12 4.63e+11 5.2 12 1.49e+12 5.4 12 2.27e+11 5.9
1.00 6 31 2.61e+10 45.8 35 1.44e+11 180.5 29 3.51e+10 225.7
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Implementation and Example

Observations

For m > 0, Anderson(m) is much better than Picard

Anderson(m) does better than Newton GMRES

There is little benefit in m ≥ 3

`∞ optimization seems to be a poor idea

`1 optimization appears fine, but the cost is not worth it
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Summary

Anderson acceleration can improve Picard iteration

Implementation does not require derivatives

Good when Newton is not possible
Convergence theory (and practice) is local

Applications to electronic structure computations and
multiphysics coupling
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