Anderson Acceleration

C. T. Kelley NC State University tim_kelley@ncsu.edu Supported by ARO, NSF, DOE(CASL/LANL)

Poly U, May 16, 2014

Outline

1 Algorithms

Motivation and Applications

2 Theory

- Linear Problems
- Nonlinear Theory

3 Implementation and Example

4 Summary

- Algorithms

Motivation and Applications

Anderson Acceleration Algorithm

Solve fixed point problems

$$u=G(u)$$

faster than Picard iteration

$$u_{k+1}=G(u_k).$$

Motivation (Anderson 1965) SCF iteration in electronic structure computations.

Motivation and Applications

Why not Newton?

Newton's method

$$u_{k+1} = u_k - (I - G'(u_k))^{-1}(u_k - G(u_k))$$

- converges faster,
- does not require that *G* be a contraction,
- needs G'(u) or G'(u)w.

Sometimes you will not have G'.

Motivation and Applications

Electronic Structure Computations

Nonlinear eignevalue problem: Kohn-Sham equations

$$\mathbf{H}_{ks}[\psi_i] = -\frac{1}{2}\nabla^2\psi_i + V(\rho)\psi_i = \lambda_i\psi_i \quad i = 1, N$$

where the charge density is

$$\rho = \sum_{i=1}^N \|\psi_i\|^2.$$

Write this as

$$\mathbf{H}(\rho)\Psi=\Lambda\Psi$$

- Algorithms

Motivation and Applications

Self-Consistent Field iteration (SCF)

Given ρ

Solve the linear eigenvalue problem

 $\mathbf{H}(\rho)\Psi=\Lambda\Psi$

for the N eigenvalues/vectors you want.

Update the charge density via

$$o \leftarrow \sum_{i=1}^N \|\psi_i\|^2.$$

• Terminate if change in ρ is sufficiently small.

- Algorithms

Motivation and Applications

SCF as a fixed-point iteration

SCF is a fixed point iteration

$$\rho \leftarrow G(\rho)$$

Not clear how to differentiate G

- termination criteria in eigen-solver
- multiplicities of eigenvalues not know at the start

Motivation and Applications

Multiphysics Coupling

Given several simulators: $\{S_j\}_{j=1}^{N_S}$

- The simulators depend on a partition {X_j}^{N_S}_{j=1} of the primary variables
- S_i computes X_i as a function of $Z_i = \{X_j\}_{j \neq i}$
- The maps *S_i* could contain
 - Black-box solvers
 - Legacy codes
 - Table lookups
 - Internal stochastics
- Jacobian information very hard to get.

- Algorithms

Motivation and Applications

Iteration to self-consistency

Chose one X_i to **expose**. Then

• for
$$j = 1 : N_S, j \neq i$$

 $X_j = S_j(Z_j)$
• $X_i \leftarrow S_i(Z_i)$

This is a fixed point problem

└─ Motivation and Applications

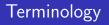
Basic Algorithm

anderson(
$$u_0, G, m$$
)
 $u_1 = G(u_0); F_0 = G(u_0) - u_0$
for $k = 1, ...$ do
 $m_k = \min(m, k)$
 $F_k = G(u_k) - u_k$
Minimize $\|\sum_{j=0}^{m_k} \alpha_j^k F_{k-m_k+j}\|$ subject to
 $\sum_{j=0}^{m_k} \alpha_j^k = 1.$
 $u_{k+1} = (1 - \beta_k) \sum_{j=0}^{m_k} \alpha_j^k u_{k-m_k+j} + \beta_k \sum_{j=0}^{m_k} \alpha_j^k G(u_{k-m_k+j})$
end for

-

э

Motivation and Applications



m, depth. We refer to Anderson(*m*).
 Anderson(0) is Picard.

•
$$F(u) = G(u) - u$$
, residual

- $\{\alpha_i^k\}$, coefficients
- $\{\beta_k\}$, mixing parameters

•
$$\|\cdot\|$$
, ℓ^2 , ℓ^1 , or ℓ^∞

We set $\beta_k = 1$ in this talk.

Motivation and Applications

Optimization Problem for Coefficients: Version I

This version is useful for analysis. Solve the unconstrained problem

$$\min \|F(u_k) - \sum_{j=1}^{m_k} \alpha_j^k (F(u_{k-m_k+j}) - F(u_k))\|_{\mathcal{H}}$$

for $\{\alpha_j^k\}_{j=1}^k$. Then α_0^k by

$$\alpha_0^k = 1 - \sum_{j=1}^{m_k} \alpha_j^k.$$

Not optimal for implementation (more later).

Linear Problems

Linear Problems

Here

$$G(u)=Mu+b$$

where M is $N \times N$ and ||M|| < 1. <u>Theorem</u>: (Toth-K, 2013) The residuals for Anderson(m) converges to 0 q-linearly with q-factor c.

$$||F(u_{k+1})|| \leq c ||F(u_k)||.$$

No worse that Picard iteration.

Theory

Linear Problems

Proof: residual convergence

Claim: $||F(u_{k+1})|| = ||b - (I - M)u_{k+1}|| \le c ||F(u_k)||$ proof: Since $\sum \alpha_j = 1$, the new residual is

$$F(u_{k+1}) = b - (I - M)u_{k+1}$$

= $\sum_{j=0}^{m_k} \alpha_j [b - (I - M)(b + Mu_{k-m_k+j})]$
= $\sum_{j=0}^{m_k} \alpha_j M [b - (I - M)u_{k-m_k+j}]$
= $M \sum_{j=0}^{m_k} \alpha_j F(u_{k-m_k+j})$

イロト イポト イヨト イヨト 三日

Linear Problems

So, by the optimality condition

$$\|F(u_{k+1})\| \leq \|M\| \|\sum_{j=0}^{m_k} \alpha_j F(u_{k-m_k+j})\|$$

$$\leq \|M\| \|F(u_k)\| \leq c \|F(u_k)\|$$

∃ ► < ∃ ►

< 口 > < 同

э

Theory

Linear Problems

r-linear convergence of $\{u_k\}$

If we set
$$e = u - u^*$$
, then $F(u) = -(I - M)e$. So q-linear convergence of residuals implies that

$$(1-c)\|e_k\| \le \|F(u_k)\| \le c^k \|F(u_0)\| \le c^k (1+c)\|e_0\|$$

and hence

$$\|e_k\| \leq \left(rac{1+c}{1-c}
ight)c^k\|e_0\|.$$

which is r-linear convergence with r-factor c.

Theory

Linear Problems

Connection to GMRES

Recall that the k GMRES iteration is the solution of the linear least squares problem

$$\min_{u\in u_0+\mathcal{K}_k}\|b-(I-M)u\|_2$$

where the Krylov subspace is

$$\mathcal{K}_k = \operatorname{span}(r_0, (I - M)r_0, \dots, (I - M)^{k-1}r_0)$$

And erson iteration with the ℓ^2 norm is also an residual minimization.

Connection: (Walker-Ni, 2011)

If I - M is nonsingular and GMRES residuals are strictly decreasing in norm, then

$$u_{k+1} = G(u_k^{GMRES}).$$

C. T. Kelley

/ Research

└─ Nonlinear Theory

- Assume G is a contraction, constant c.
 Objective: do no worse than Picard
- Local theory only; $||e_0||$ is small.
- Better results for $\|\cdot\|_2$.

└─ Nonlinear Theory

Assumptions: m = 1

• There is $u^* \in \mathbb{R}^N$ such that $F(u^*) = G(u^*) - u^* = 0$.

$$||G(u) - G(v)|| \le c ||u - v|| \text{ for } u, v \text{ near } u^*.$$

• G is Lipschitz continuously differentiable near u^*

Words: G has a fixed point and is a smooth contraction in a neighborhood of that fixed point.

└─ Nonlinear Theory

Convergence for Anderson(1) with ℓ^2 optimization

Let $c < \hat{c} < 1$, then Anderson(1) converges and

$$\limsup_{k\to\infty}\frac{\|F(u_{k+1})\|_2}{\|F(u_k)\|_2}\leq c.$$

└─ Nonlinear Theory

Assumptions: m > 1, any norm

- The assumptions for m = 1 hold.
- There is M_{lpha} such that for all $k \geq 0$

$$\sum_{j=1}^{m_k} |\alpha_j| \le M_\alpha.$$

└─ Nonlinear Theory

Convergence for Anderson(m), any norm

Assumptions and $c < \hat{c} < 1$ If u_0 is sufficiently close to u^* then the Anderson iteration converges to u^* r-linearly with r-factor no greater than \hat{c} . In fact

$$\|F(u_k)\| \le \hat{c}^k \|F(u_0)\|$$
 (1)

and

$$\|e_k\| \le \frac{(1+c)}{1-c} \hat{c}^k \|e_0\|.$$
 (2)

Implementation

At iteration k solve

$$\min_{\theta \in R^{m_k}} \|F(u_k) - \sum_{j=0}^{m_k-1} \theta_j (F(u_{j+1}) - F(u_j))\|$$

for $\theta \in R^{m_k}$. Then

$$u_{k+1} = G(u_k) - \sum_{j=0}^{m_k-1} \theta_j^k (G(u_{j+1}) - G(u_j)).$$

In terms of the original iteration

$$\alpha_0 = \theta_0, \alpha_j = \theta_j - \theta_{j-1}$$
 for $1 \le j \le m_k - 1$ and $\alpha_{m_k} = 1 - \theta_{m_k-1}$.

э

Why is this better?

- Coefficient matrices only change by a column per iteration.
- Can update QR factorization "fast" to compute θ .
- Somewhat better conditioning.

Only the first point matters since m is typically very small. We do it this way in the example.

Example from Radiative Transfer

Chandrasekhar H-equation

$$H(\mu) = G(H) \equiv \left(1 - \frac{\omega}{2} \int_0^1 \frac{\mu}{\mu + \nu} H(\nu) \, d\nu.\right)^{-1}$$

 $\omega \in [0, 1]$ is a physical parameter. $F'(H^*)$ is singular when $\omega = 1$.

$$\rho(G'(H^*)) \leq 1 - \sqrt{1 - \omega} < 1$$

Numerical Experiments

- Discretize with 500 point composite midpoint rule.
- Compare Newton-GMRES with Anderson(m).
- Terminate when $||F(u_k)||_2/||F(u_0)||_2 \le 10^{-8}$
- ω = .5, .99, 1.0
- 0 ≤ *m* ≤ 6
- $\blacksquare~\ell^1$, ℓ^2 , ℓ^∞ optimizations

Newton-GMRES vs Anderson(0)

Function evaluations:

	Nev	vton-(Fixed Point			
ω	.5	.99	1.0	.5	.99	1.0
Fs	12	18	49	11	75	23970

э

Anderson(m)

		ℓ^1 Optimization			ℓ^2 Optimization			ℓ^∞ Optimization		
ω	т	Fs	κ_{max}	S _{max}	Fs	κ_{max}	S _{max}	Fs	κ _{max}	S _{max}
0.50	1	7	$1.00e{+}00$	1.4	7	1.00e+00	1.4	7	$1.00e{+}00$	1.5
0.99	1	11	$1.00e{+}00$	3.5	11	$1.00e{+}00$	4.0	10	$1.00e{+}00$	10.1
1.00	1	21	$1.00e{+}00$	3.0	21	$1.00e{+}00$	3.0	19	$1.00e{+}00$	4.8
0.50	2	6	1.36e+03	1.4	6	2.90e+03	1.4	6	2.24e+04	1.4
0.99	2	10	1.19e+04	5.2	10	9.81e+03	5.4	10	4.34e+02	5.9
1.00	2	18	1.02e+05	43.0	16	2.90e+03	14.3	34	5.90e+05	70.0
0.50	3	6	7.86e+05	1.4	6	6.19e+05	1.4	6	5.91e+05	1.4
0.99	3	10	6.51e+05	5.2	10	2.17e+06	5.4	11	1.69e+06	5.9
1.00	3	22	1.10e+08	18.4	17	2.99e+06	23.4	51	9.55e+07	66.7

< □ > < 同 >

æ

Anderson(m)

		ℓ^1 Optimization			ℓ^2 Optimization			ℓ^∞ Optimization		
ω	т	Fs	К _{тах}	S _{max}	Fs	К _{тах}	Smax	Fs	к _{тах}	S _{max}
0.50	4	7	2.64e+09	1.5	6	9.63e+08	1.4	6	9.61e+08	1.4
0.99	4	11	1.85e+09	5.2	11	6.39e+08	5.4	11	1.61e+09	5.9
1.00	4	23	2.32e+08	12.7	21	6.25e+08	6.6	35	1.38e+09	49.0
0.50	5	7	1.80e+13	1.4	6	2.46e+10	1.4	6	2.48e+10	1.4
0.99	5	11	3.07e+10	5.2	12	1.64e+11	5.4	13	3.27e+11	5.9
1.00	5	21	2.56e+09	21.8	27	1.06e+10	14.8	32	4.30e+09	190.8
0.50	6	7	2.65e+14	1.4	6	2.46e+10	1.4	6	2.48e+10	1.4
0.99	6	12	4.63e+11	5.2	12	1.49e+12	5.4	12	2.27e+11	5.9
1.00	6	31	2.61e+10	45.8	35	1.44e+11	180.5	29	3.51e+10	225.7

< □ > < 同 >

э

Observations

- For m > 0, Anderson(m) is much better than Picard
- Anderson(m) does better than Newton GMRES
- There is little benefit in $m \ge 3$
- ℓ^{∞} optimization seems to be a poor idea
- ℓ^1 optimization appears fine, but the cost is not worth it

- Anderson acceleration can improve Picard iteration
- Implementation does not require derivatives
 - Good when Newton is not possible
 - Convergence theory (and practice) is local
- Applications to electronic structure computations and multiphysics coupling