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Algorithms and Theory

Algorithm description

Anderson Acceleration

anderson(u0,G,m)

u1 = G(u0); F0 = G(u0)− u0

for k = 1, . . . do
mk ≤ min(m, k)
Fk = G(uk)− uk
Minimize ‖

∑mk
j=0 α

k
j Fk−mk+j‖ subject to

∑mk
j=0 α

k
j = 1.

uk+1 =
∑mk

j=0 α
k
j G(uk−mk+j)

end for
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Algorithms and Theory

Algorithm description

Terminology

m, depth. We refer to Anderson(m).
Anderson(0) is Picard.

F(u) = G(u)− u, residual

{αk
j }, coefficients

Minimize ‖
∑mk

j=0 α
k
j Fk−mk+j‖ subject to

∑mk
j=0 α

k
j = 1.

is the optimization problem.

‖ · ‖, `2, `1, or `∞
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Algorithms and Theory

Typical convergence result

Typical local convergence theorem (Toth-K 2015, Chen-K
2019)

Assume:

G is a C 1 contraction, contractivity constant c < 1

Solution of the optimization is no worse than Picard.

Either m = 1 or there is Mα such that for all k ≥ 0
mk∑
j=1

|αj | ≤ Mα.

You start close to the solution u∗ (warm start, EDIIS?)

Then, pessimistically

lim sup
k→∞

(
‖F(uk)‖
‖F(u0)‖

)1/k

≤ c .
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Algorithms and Theory

Typical convergence result

Analysis

Most theory assumes differentiability

But there are no derivatives in the method

Exceptions:

Global phase of EDIIS (Chen-Kelley, 2019)
This talk.
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Algorithms and Theory

Splittable Nonlinearities

Splittable nonlinearity, (Chen-Yamamoto 89)

Newton: Solve F(x) = 0

F = FS + FN

Solution x∗

FS nonsingular near x∗ and F′S Lip cont

FN Lipschitz continuous with small Lip const ε

Newton: x+ = xc − FS(xc)−1F(xc)
Then . . .
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Algorithms and Theory

Splittable Nonlinearities

Convergence of e = x− x∗ to 0

xn+1 = xn − F′S(xn)−1F(xn)→ x∗

and
‖en+1‖ = O(‖en‖2 + ε‖en‖)

Proof:

en+1 = (en − F′S(xn)−1(FS(xn)− FS(x∗))

+F′S(xn)−1(FN(x∗)− FN(xn))
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Algorithms and Theory

Splittable Nonlinearities

Many appplications but fashion moved on

Lots of activity in 1990s
Heinkenschloss, Tran, K 92, Sachs-K 90s

Semismooth Newton and smoothing Newton took over.

but . . . CFD! (Coffey, McMullan, McRae, K., 03)

Problem: aside from CFD, you must figure out the splitting.
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New Result for Splittable G

Same assumptions except G splittable

Same algorithm, same code

Same theorem except c → c + ε

Uglier proof
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Example

Compact fixed point problems

GI (u)(x) =

∫ 1

0
g(x , y)Φ(u(y)) dy .

where g ∈ C and

Φ(u(x)) = β(u(x) + b(x))

and β(u) is differentiable except for finitely many points.
Example: β(u) = |u|
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Example

The splitting: β(u) = |u|

Let

Ωρ = {x | |u∗(x) +b(x)| < 2ρ} and Ωc
ρ = {x | |u∗(x) +b(x)| ≥ 2ρ}.

We define

G ρ
N(u)(x) =

∫
Ωρ

g(x , y)|u(y) + b(y)| dy

and

G ρ
S (u) = G (u)− G ρ

N(u) =

∫
Ωc

ρ

g(x , y)|u(y) + b(y)| dy
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Example

The splitting’s good

‖u(x)− u∗(x)‖∞ < ρ implies u + b has the same sign as
u∗ + b for u ∈ Ωc

ρ

So GS is smooth

Lip constant of GN
ρ is proportional to m(Ωρ)

So if u∗(x) + b(x) = 0 only finitely often, m(Ωρ)→ 0.
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Example

Simple example

Two-point boundary-value problem (Chen-Nashed 2000)

−v ′′ = λmax(v − α, 0), v(0) = v0, v(1) = v1

Convert to fixed point problem by

Set v = u + φ, where φ(x) = v1x + (1− x)v0

Let G be the Greens function for −d2/dx2 with zero bc

Multiply the equation by G and . . .
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Example

Fixed point formulation

u = λG (max(u + φ− α, 0))

Solve with Anderson(m) for m = 0, 1, 2, 3.
Increasing m to 2 or 3 makes little difference.

We plot iteration histories, v , and −v ′′.
See how constraints on u′′ are active.

λ = 11.65, α = .8

Central differences with 100 interior grid points.
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Example

Residual Histories and solution
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Summary

Summary

Nonlinear solver for nonsmooth fixed-point problems

Splittable nonlinearities
Requires no human intervation, no new algorithm
unlike Newton
Structure only used in analysis

Good for 15 minute talk

W. Bian, X. Chen, and C. T. Kelley, Anderson
acceleration for a class of nonsmooth fixed-point problems,
SIAM J. Sci. Comp., (2021). doi:10.1137/20M132938X.
Published online Jan 20, 2021.
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